Skip to main content

Geometric and Computational Approach to Classical and Quantum Secret Sharing

  • Conference paper
  • First Online:
Applications of Computer Algebra (ACA 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 198))

Included in the following conference series:

  • 879 Accesses

Abstract

Secret sharing is a cryptographic scheme to encode a secret to multiple shares being distributed to participants, so that only qualified (or authorized) sets of participants can reconstruct the original secret from their shares. It is also known that every linear ramp secret sharing can be expressed by a nested pair of linear codes \(C_2 \subset C_1 \subset \mathbf {F}_q^n\). On the other hand, a nest code pair \(C_2 \subset C_1 \subset \mathbf {F}_q^n\) can also give a quantum secret sharing. Since \(C_1\) and \(C_2\) are linear codes, it is natural to use algebraic geometry codes to construct \(C_1\) and \(C_2\). The purpose of this work is to find sufficient conditions for qualified or forbidden sets by using geometric properties of the set of points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bains, T.: Generalized Hamming weights and their applications to secret sharing schemes. Master’s Thesis, University of Amsterdam (2008). Supervised by R. Cramer, G. van der Geer, and R. de Haan

    Google Scholar 

  2. Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Advances in Cryptology—CRYPTO’84. Lecture Notes in Computer Science, vol. 196, pp. 242–269. Springer (1985). doi:10.1007/3-540-39568-7_20

  3. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure computation from random error correccting codes. In: Advances in Cryptology—EUROCRYPT 2007. Lecture Notes in Computer Science, vol. 4515, pp. 291–310. Springer (2007). doi:10.1007/978-3-540-72540-4_17

  4. Chen, H., Cramer, R., de Haan, R., Cascudo Pueyo, I.: Strongly multiplicative ramp schemes from high degree rational points on curves. In: Smart, N. (ed.) Advances in Cryptology—EUROCRYPT 2008. Lecture Notes in Computer Science, vol. 4965, pp. 451–470. Springer (2008). doi:10.1007/978-3-540-78967-3_26

  5. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999). doi:10.1103/PhysRevLett.83.648

  6. Geil, O., Pellikaan, R.: On the structure of order domains. Finite Fields Appl. 8, 369–396 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000). doi:10.1103/PhysRevA.61.042311

    Article  MathSciNet  Google Scholar 

  8. Heegard, C., Little, J., Saints, K.: Systematic encoding via Gröbner bases for a class of algebraic-geometric Goppa codes. IEEE Trans. Inf. Theory 41(6), 1752–1761 (1995). doi:10.1109/18.476247

    Article  MATH  Google Scholar 

  9. Kurihara, J., Uyematsu, T., Matsumoto, R.: Secret sharing schemes based on linear codes can be precisely characterized by the relative generalized Hamming weight. IEICE Trans. Fundam. E95-A(11), 2067–2075 (2012). doi:10.1587/transfun.E95.A.2067

  10. Matsumoto, R.: Coding theoretic construction of quantum ramp secret sharing, Version 4 or later (2014)

    Google Scholar 

  11. Matsumoto, R., Miura, S.: Finding a basis of a linear system with pairwise distinct discrete valuations on an algebraic curve. J. Symb. Comput. 30(3), 309–323 (2000). doi:10.1006/jsco.2000.0372

    Article  MathSciNet  MATH  Google Scholar 

  12. Matsumoto, R., Miura, S.: On construction and generalization of algebraic geometry codes. In: Katsura, T. et al. (eds.) Proceedings of Algebraic Geometry, Number Theory, Coding Theory, and Cryptography, pp. 3–15. University of Tokyo, Japan (2000). http://www.rmatsumoto.org/repository/weight-construct.pdf

  13. Ogata, W., Kurosawa, K., Tsujii, S.: Nonperfect secret sharing schemes. In: Advances in Cryptology—AUSCRYPT ’92. Lecture Notes in Computer Science, vol. 718, pp. 56–66. Springer (1993). doi:10.1007/3-540-57220-1_52

  14. Ogawa, T., Sasaki, A., Iwamoto, M., Yamamoto, H.: Quantum secret sharing schemes and reversibility of quantum operations. Phys. Rev. A 72(3), 032318 (2005). doi:10.1103/PhysRevA.72.032318

    Article  Google Scholar 

  15. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). doi:10.1145/359168.359176

    Article  MathSciNet  MATH  Google Scholar 

  16. Smith, A.D.: Quantum secret sharing for general access structures. arXiv:quant-ph/0001087 (2000)

  17. Yamamoto, H.: Secret sharing system using \((k, l, n)\) threshold scheme. Electron. Commun. Jpn. (Part I: Communications) 69(9), 46–54 (1986). doi:10.1002/ecja.4410690906 (The original Japanese version published in 1985)

  18. Zhang, P., Matsumoto, R.: Quantum strongly secure ramp secret sharing. Quantum Inf. Process. 14(2), 715–729 (2015). doi:10.1007/s11128-014-0863-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from Japan Society for the Promotion of Science (Grant Nos. 23246071 and 26289116), from the Spanish MINECO/FEDER (Grant No. MTM2012-36917-C03-03 and No. MTM2015-65764-C3-2-P), the Danish Council for Independent Research (Grant No. DFF-4002-00367) and from the “Program for Promoting the Enhancement of Research Universities” at Tokyo Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryutaroh Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Matsumoto, R., Ruano, D. (2017). Geometric and Computational Approach to Classical and Quantum Secret Sharing. In: Kotsireas, I., Martínez-Moro, E. (eds) Applications of Computer Algebra. ACA 2015. Springer Proceedings in Mathematics & Statistics, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-319-56932-1_18

Download citation

Publish with us

Policies and ethics