Skip to main content

PK/PD Approaches

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Book cover Drug Discovery and Evaluation: Methods in Clinical Pharmacology

Abstract

The success of the drug development program heavily relies on the rational drug design with appropriate choice of drug and dosing regimen. This requires a good understanding of both drug delivery mechanism and drug response mechanism. Two of the most important pharmacologic disciplines, namely, pharmacokinetics (PK) and pharmacodynamics (PD), can be linked together by PK/PD approach, which has tremendous potential to influence decision-making through modeling and simulation. With its nature of an interdisciplinary science, this state-of-art strategy can leverage different kinds of preclinical and clinical data through mathematical and statistical models. This framework is powerful to assist researchers with better understanding of drug behavior and effectiveness, disease progression, and the impact of demographic characteristics on a subpopulation or individual patients. The aim of this chapter is to provide an overview of basic concepts in PK and PD and discuss various approaches in PK/PD modeling and simulation, together with its applications in antibiotic drug development as it is very well established in this field. The PK/PD concepts and theories presented here are not limited to antibiotics only but can also be broadly applied to drug development in other therapeutic areas.

Willi Weber has retired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Further Reading

  • Asin-Prieto E, Soraluce A, Troconiz IF, Campo Cimarras E, Saenz de Ugarte Sobron J, Rodriguez-Gascon A, Isla A (2015) Population pharmacokinetic models for cefuroxime and metronidazole used in combination as prophylactic agents in colorectal surgery: model-based evaluation of standard dosing regimens. Int J Antimicrob Agents 45(5):504–511

    Article  CAS  PubMed  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625

    Article  CAS  PubMed  Google Scholar 

  • Benson JM (2017) Antimicrobial pharmacokinetics and pharmacodynamics in older adults. Infect Dis Clin N Am 31(4):609–617

    Article  Google Scholar 

  • Chaurasia CS, Muller M, Bashaw ED, Benfeldt E, Bolinder J, Bullock R, Bungay PM, DeLange EC, Derendorf H, Elmquist WF, Hammarlund-Udenaes M, Joukhadar C, Kellogg DL Jr, Lunte CE, Nordstrom CH, Rollema H, Sawchuk RJ, Cheung BW, Shah VP, Stahle L, Ungerstedt U, Welty DF, Yeo H (2007) AAPS-FDA workshop white paper: microdialysis principles, application, and regulatory perspectives. J Clin Pharmacol 47(5):589–603

    Article  CAS  PubMed  Google Scholar 

  • Craig WA, Redington J, Ebert SC (1991) Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother 27(Suppl C):29–40

    Article  CAS  PubMed  Google Scholar 

  • Csajka C, Verotta D (2006) Pharmacokinetic-pharmacodynamic modelling: history and perspectives. J Pharmacokinet Pharmacodyn 33(3):227–279

    Article  CAS  PubMed  Google Scholar 

  • Czock D, Keller F (2007) Mechanism-based pharmacokinetic-pharmacodynamic modeling of antimicrobial drug effects. J Pharmacokinet Pharmacodyn 34(6):727–751

    Article  CAS  PubMed  Google Scholar 

  • Derendorf H, Meibohm B (1999) Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res 16(2):176–185

    Article  CAS  PubMed  Google Scholar 

  • Derendorf H, Lesko LJ, Chaikin P, Colburn WA, Lee P, Miller R, Powell R, Rhodes G, Stanski D, Venitz J (2000) Pharmacokinetic/pharmacodynamic modeling in drug research and development. J Clin Pharmacol 40(12 Pt 2):1399–1418

    CAS  PubMed  Google Scholar 

  • Drusano GL (2004) Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol 2(4):289–300

    Article  CAS  PubMed  Google Scholar 

  • EMA (2006) Guidance on the role of pharmacokinetics in the development of medicinal products in the pediatric population. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003066.pdf

  • EMA (2007) Guidance on reporting the results of population pharmacokinetic analyses. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003067.pdf

  • Ette EI, Williams PJ (2007) Pharmacometrics: the science of quantitative pharmacology. Wiley, Hoboken

    Book  Google Scholar 

  • FDA (1999) Guidance for industry population pharmacokinetics. https://www.fda.gov/downloads/drugs/guidances/UCM072137.pdf

  • FDA (2003) Guidance for industry exposure-response relationships – study design, data analysis, and regulatory applications. https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm072109.pdf

  • FDA (2005) Guidance for industry E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for nonantiarrhythmic drugs. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073153.pdf

  • Felmlee MA, Morris ME, Mager DE (2012) Mechanism-based pharmacodynamic modeling. Methods Mol Biol 929:583–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrielsson J, Weiner D (2016) Pharmacokinetic and pharmacodynamic data analysis: concepts and applications, 5th edn., revised and expanded. Apotekarsocieteten, Stockholm

    Google Scholar 

  • Gieschke R, Burger HU, Reigner B, Blesch KS, Steimer JL (2003) Population pharmacokinetics and concentration-effect relationships of capecitabine metabolites in colorectal cancer patients. Br J Clin Pharmacol 55(3):252–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong X, Hu M, Zhao L (2018) Big data toolsets to pharmacometrics: application of machine learning for time-to-event analysis. Clin Transl Sci 11:305–311

    Article  PubMed  PubMed Central  Google Scholar 

  • Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P (2008) The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol 22(6):633–648

    Article  CAS  PubMed  Google Scholar 

  • Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47(2):331–385

    CAS  PubMed  Google Scholar 

  • Holford N (2013) A time to event tutorial for pharmacometricians. CPT Pharmacometrics Syst Pharmacol 2:e43

    Article  PubMed  PubMed Central  Google Scholar 

  • Jusko WJ (1971) Pharmacodynamics of chemotherapeutic effects: dose-time-response relationships for phase-nonspecific agents. J Pharm Sci 60(6):892–895

    Article  CAS  PubMed  Google Scholar 

  • Levison ME (2004) Pharmacodynamics of antimicrobial drugs. Infect Dis Clin N Am 18(3):451–465. vii

    Article  Google Scholar 

  • Liu P, Rand KH, Obermann B, Derendorf H (2005) Pharmacokinetic-pharmacodynamic modelling of antibacterial activity of cefpodoxime and cefixime in in vitro kinetic models. Int J Antimicrob Agents 25(2):120–129

    Article  PubMed  Google Scholar 

  • Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 31(5):510–518

    Article  CAS  PubMed  Google Scholar 

  • Mahmood I (2007) Prediction of drug clearance in children: impact of allometric exponents, body weight, and age. Ther Drug Monit 29(3):271–278

    Article  PubMed  Google Scholar 

  • Mahmood I, Staschen CM, Goteti K (2014) Prediction of drug clearance in children: an evaluation of the predictive performance of several models. AAPS J 16(6):1334–1343

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng L, Mui E, Holubar MK, Deresinski SC (2017) Comprehensive guidance for antibiotic dosing in obese adults. Pharmacotherapy 37(11):1415–1431

    Article  PubMed  Google Scholar 

  • Mould DR, Upton RN (2012) Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol 1:e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouton JW, Vinks AA (2005) Pharmacokinetic/pharmacodynamic modelling of antibacterials in vitro and in vivo using bacterial growth and kill kinetics: the minimum inhibitory concentration versus stationary concentration. Clin Pharmacokinet 44(2):201–210

    Article  CAS  PubMed  Google Scholar 

  • Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL (2005) Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother 55(5):601–607

    Article  CAS  PubMed  Google Scholar 

  • Nielsen EI, Viberg A, Lowdin E, Cars O, Karlsson MO, Sandstrom M (2007) Semimechanistic pharmacokinetic/pharmacodynamic model for assessment of activity of antibacterial agents from time-kill curve experiments. Antimicrob Agents Chemother 51(1):128–136

    Article  CAS  PubMed  Google Scholar 

  • Nielsen EI, Cars O, Friberg LE (2011a) Pharmacokinetic/pharmacodynamic (PK/PD) indices of antibiotics predicted by a semimechanistic PKPD model: a step toward model-based dose optimization. Antimicrob Agents Chemother 55(10):4619–4630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen EI, Cars O, Friberg LE (2011b) Predicting in vitro antibacterial efficacy across experimental designs with a semimechanistic pharmacokinetic-pharmacodynamic model. Antimicrob Agents Chemother 55(4):1571–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolting A, Dalla Costa T, Rand KH, Derendorf H (1996) Pharmacokinetic-pharmacodynamic modeling of the antibiotic effect of piperacillin in vitro. Pharm Res 13(1):91–96

    Article  CAS  PubMed  Google Scholar 

  • Roberts JA, Kirkpatrick CM, Lipman J (2011) Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother 66(2):227–231

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Derendorf H (2014) Applied pharmacometrics. AAPS advances in the pharmaceutical sciences series: 14. Springer, New York

    Google Scholar 

  • Schuck EL, Grant M, Derendorf H (2005) Effect of simulated microgravity on the disposition and tissue penetration of ciprofloxacin in healthy volunteers. J Clin Pharmacol 45(7):822–831

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Jusko WJ (1996) Characterization of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 24(6):611–635

    Article  CAS  PubMed  Google Scholar 

  • Sheiner LB (1997) Learning versus confirming in clinical drug development. Clin Pharmacol Ther 61(3):275–291

    Article  CAS  PubMed  Google Scholar 

  • Sheiner LB, Beal SL (1980) Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 8(6):553–571

    Article  CAS  PubMed  Google Scholar 

  • Sheiner LB, Rosenberg B, Melmon KL (1972) Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res 5(5):411–459

    Article  CAS  PubMed  Google Scholar 

  • Singh RSP, Mukker JK, Drescher SK, Deitchman AN, Derendorf H (2017) A need to revisit clinical breakpoints of tigecycline: effect of atypical non-linear plasma protein binding. Int J Antimicrob Agents 49(4):449–455

    Article  CAS  PubMed  Google Scholar 

  • Sy SKB, Derendorf H (2016) Pharmacokinetics I: PK-PD approach, the case of antibiotic drug development. In: Müller M (ed) Clinical pharmacology: current topics and case studies, 2nd edn. Springer, Cham, pp 185–217

    Chapter  Google Scholar 

  • Sy SK, Zhuang L, Derendorf H (2016) Pharmacokinetics and pharmacodynamics in antibiotic dose optimization. Expert Opin Drug Metab Toxicol 12(1):93–114

    Article  CAS  PubMed  Google Scholar 

  • Sy S, Zhuang L, Xia H, Beaudoin ME, Schuck VJ, Derendorf H (2017) Prediction of in vivo and in vitro infection model results using a semimechanistic model of avibactam and aztreonam combination against multidrug resistant organisms. CPT Pharmacometrics Syst Pharmacol 6(3):197–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sy SKB, Zhuang L, Xia H, Beaudoin ME, Schuck VJ, Nichols WW, Derendorf H (2018) A mathematical model-based analysis of the time-kill kinetics of ceftazidime/avibactam against Pseudomonas aeruginosa. J Antimicrob Chemother 73(5):1295–1304

    Article  PubMed  Google Scholar 

  • Tam VH, Schilling AN, Nikolaou M (2005) Modelling time-kill studies to discern the pharmacodynamics of meropenem. J Antimicrob Chemother 55(5):699–706

    Article  CAS  PubMed  Google Scholar 

  • Tam VH, Ledesma KR, Vo G, Kabbara S, Lim TP, Nikolaou M (2008) Pharmacodynamic modeling of aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii: identifying dosing regimens to suppress resistance development. Antimicrob Agents Chemother 52(11):3987–3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treyaprasert W, Schmidt S, Rand KH, Suvanakoot U, Derendorf H (2007) Pharmacokinetic/pharmacodynamic modeling of in vitro activity of azithromycin against four different bacterial strains. Int J Antimicrob Agents 29(3):263–270

    Article  CAS  PubMed  Google Scholar 

  • Zhuang L, Sy SK, Xia H, Singh RP, Mulder MB, Liu C, Derendorf H (2015) Evaluation of in vitro synergy between vertilmicin and ceftazidime against Pseudomonas aeruginosa using a semi-mechanistic pharmacokinetic/pharmacodynamic model. Int J Antimicrob Agents 45(2):151–160

    Article  CAS  PubMed  Google Scholar 

  • Zhuang L, He Y, Xia H, Liu Y, Sy SK, Derendorf H (2016) Gentamicin dosing strategy in patients with end-stage renal disease receiving haemodialysis: evaluation using a semi-mechanistic pharmacokinetic/pharmacodynamic model. J Antimicrob Chemother 71(4):1012–1021

    Article  CAS  PubMed  Google Scholar 

  • Zuluaga AF, Salazar BE, Rodriguez CA, Zapata AX, Agudelo M, Vesga O (2006) Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases. BMC Infect Dis 6:55

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Derendorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yu, Y., Rüppel, D., Weber, W., Derendorf, H. (2019). PK/PD Approaches. In: Hock, F., Gralinski, M. (eds) Drug Discovery and Evaluation: Methods in Clinical Pharmacology. Springer, Cham. https://doi.org/10.1007/978-3-319-56637-5_26-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56637-5_26-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56637-5

  • Online ISBN: 978-3-319-56637-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    PK/PD Approaches
    Published:
    01 February 2019

    DOI: https://doi.org/10.1007/978-3-319-56637-5_26-2

  2. Original

    PK/PD Approaches
    Published:
    28 May 2018

    DOI: https://doi.org/10.1007/978-3-319-56637-5_26-1