Skip to main content

Biogeography of Orchid Mycorrhizas

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 230))

Abstract

Most orchid mycorrhizal fungi (OMF) are free-living decomposers that do not depend on orchids for establishment or survival. Despite their importance for completion of the orchid life cycle, the geographical distribution of OMF remains poorly understood. Here we review studies that examined the relationship between orchids and their mycorrhizal associates and place them in a biogeographical context. We first describe the diversity of OMF and then examine the patterns of OMF distributions according to geographical locations, biomes, and islands. OMF have been found across all major biogeographic realms and biomes. While the distribution of the major mycorrhizal fungal families that associate with orchids appears to be entirely cosmopolitan, we know little about how the distribution of particular OMF shapes the distribution of the orchids that rely on them. In the face of ongoing rapid anthropogenic influence on the natural environment, more information is needed to show how OMF communities vary across large geographical scales and how this affects the distribution of orchids. In particular, we need to identify the environmental variables (e.g., rainfall, geological substrate) that drive spatial variation in OMF communities. This information will be crucial for setting up future orchid conservation and restoration projects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afkhami ME, McIntyre PJ, Strauss SY (2014) Mutualist-mediated effects on species’ range limits across large geographic scales. Ecol Lett 17:1265–1273

    Article  PubMed  Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G et al (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Lond B Biol Sci 271:1799–1806

    Article  CAS  Google Scholar 

  • Bidartondo MI, Read DJ (2008) Fungal specificity bottlenecks during orchid germination and development. Mol Ecol 17:3707–3716

    PubMed  Google Scholar 

  • Bougoure JJ, Bougoure DS, Cairney JWG et al (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycol Res 109:452–460

    Article  CAS  PubMed  Google Scholar 

  • Bougoure J, Ludwig M, Brundrett M et al (2009) Identity and specificity of the fungi forming mycorrhizas with the rare mycoheterotrophic orchid Rhizanthella gardneri. Mycol Res 113:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Brown MJ, Jenkin JF, Brothers NP et al (1978) Corybas macranthus (Hook.f.) Reichb. f. (Orchidaceae), a new record for Macquarie Island. N Z J Bot 16:405–407

    Article  Google Scholar 

  • Brundrett MC, Scade A, Batty AL et al (2003) Development of in situ and ex situ seed baiting techniques to detect mycorrhizal fungi from terrestrial orchid habitats. Mycol Res 107:1210–1220

    Article  PubMed  Google Scholar 

  • Cameron DD, Johnson I, Read DJ et al (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol 180:176–184

    Article  CAS  PubMed  Google Scholar 

  • Clements MA, Jones DL (2007) A new species of Nematoceras and characterisation of N. dienemum (Orchidaceae), both from subantarctic Macquarie Island. Telopea 11:405–411

    Article  Google Scholar 

  • Cox CB (2001) The biogeographic regions reconsidered. J Biogeogr 28:511–523

    Article  Google Scholar 

  • Cruz D, Suarez JP, Piepenbring M (2016) Morphological revision of Tulasnellaceae, with two new species of Tulasnella and new records of Tulasnella spp. for Ecuador. Nova Hedwig 102:279–338

    Article  Google Scholar 

  • Davis BJ, Phillips RD, Wright M et al (2015) Continent-wide distribution in mycorrhizal fungi: implications for the biogeography of specialized orchids. Ann Bot 116:413–421

    Article  PubMed  PubMed Central  Google Scholar 

  • de Candolle AP (1820) Essai élémentaire de Géographie botanique. F. G. Levrault, Strasbourg

    Google Scholar 

  • Dearnaley JW (2006) The fungal endophytes of Erythrorchis cassythoides—is this orchid saprophytic or parasitic? Australas Mycol 25:51–57

    Google Scholar 

  • Dearnaley JDW, Martos F, Selosse M-A (2013) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) The mycota IX: fungal associations. Springer, Berlin, pp 207–230

    Google Scholar 

  • Delforge P (2006) Orchids of Europe, North Africa and the Middle East. A&C Black, London

    Google Scholar 

  • Diez JM (2007) Hierarchical patterns of symbiotic orchid germination linked to adult proximity and environmental gradients. J Ecol 95:159–170

    Article  Google Scholar 

  • Dressler RL (2005) How many orchid species? Selbyana 26:155–158

    Google Scholar 

  • Engler A (1879) Versuch einer Entwicklungsgeschichte der Pflanzenwelt: insbesondere der Florengebiete seit der Tertiärperiode. Verlag von W. Engelmann, Leipzig

    Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  • Fochi V, Chitarra W, Kohler A et al (2017) Fungal and plant gene expression in the Tulasnella calosporaSerapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol. 213:365–379

    Article  CAS  PubMed  Google Scholar 

  • Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223

    Article  CAS  Google Scholar 

  • Girlanda M, Segreto R, Cafasso D et al (2011) Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J Bot 98:1148–1163

    Article  PubMed  Google Scholar 

  • Girlanda M, Selosse MA, Cafasso D et al (2006) Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol Ecol 15:491–504

    Article  CAS  PubMed  Google Scholar 

  • Givnish TJ, Spalink D, Ames M et al (2016) Orchid historical biogeography, diversification, Antarctica and the paradox of orchid dispersal. J Biogeogr 43:1905–1916

    Article  Google Scholar 

  • Good R (1974) The geography of flowering plants, 4th edn. Longman, London

    Google Scholar 

  • Graham RR, Dearnaley JDW (2012) The rare Australian epiphytic orchid Sarcochilus weinthalii associates with a single species of Ceratobasidium. Fungal Divers 54:31–37

    Article  Google Scholar 

  • Grinnell J (1917) The niche-relationships of the California thrasher. Auk 34:427–433

    Article  Google Scholar 

  • Herrera H, Valadares, R, Contreras D, Bashan Y, Arriaga C (2016) Mycorrhizal compatibility and symbiotic seed germination of orchids from the Coastal Range and Andes in south central Chile. Mycorrhiza 27:175–188

    Google Scholar 

  • Huynh TT, Thomson R, McLean CB et al (2009) Functional and genetic diversity of mycorrhizal fungi from single plants of Caladenia formosa (Orchidaceae). Ann Bot 104:757–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irwin MJ, Bougoure JJ, Dearnaley JDW (2007) Pterostylis nutans (Orchidaceae) has a specific association with two Ceratobasidium root-associated fungi across its range in eastern Australia. Mycoscience 48:231–239

    Article  CAS  Google Scholar 

  • Jacquemyn H, Micheneau C, Roberts DL et al (2005a) Elevational gradients of species diversity, breeding system and floral traits of orchid species on Reunion Island. J Biogeogr 32:1751–1761

    Article  Google Scholar 

  • Jacquemyn H, Brys R, Hermy M et al (2005b) Does nectar reward affect rarity and extinction probabilities of orchid species? An assessment using historical records from Belgium and the Netherlands. Biol Conserv 121:257–263

    Article  Google Scholar 

  • Jacquemyn H, Merckx V, Brys R et al (2011) Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytol 192:518–528

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Merckx VSFT et al (2014) Co-existing orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytol 202:616–627

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Waud M et al (2015a) Mycorrhizal networks and coexistence in species-rich orchid communities. New Phytol 206:1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Jacquemyn H, Waud M, Merckx VSFT et al (2015b) Mycorrhizal diversity, seed germination and long-term changes in population size across nine populations of the terrestrial orchid Neottia ovata. Mol Ecol 24:3269–3280

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Waud M, Lievens B et al (2016a) Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Ann Bot 118:105–114

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Waud M, Merckx VSFT et al (2016b) Habitat-driven variation in mycorrhizal communities in the terrestrial orchid genus Dactylorhiza. Sci Rep 6:37182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Julou T, Burghardt B, Gebauer G et al (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653

    Article  CAS  PubMed  Google Scholar 

  • Kagame T, Ogura-Tsujita Y, Kinoshita A et al (2016) Fungal partner shifts during the evolution of mycoheterotrophy in Neottia. Am J Bot 103:1630–1641

    Article  Google Scholar 

  • Kohler A, Kuo A, Nagy LG et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415

    Article  CAS  PubMed  Google Scholar 

  • Kottke I, Haug I, Setaro S et al (2008) Guilds of mycorrhizal fungi and their relation to trees, ericads, orchids and liverworts in a neotropical mountain rain forest. Basic Appl Ecol 9:13–23

    Article  CAS  Google Scholar 

  • Kottke I, Suárez JP, Herrera P et al (2010) Atractiellomycetes belonging to the ‘rust’ lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids. Proc R Soc Lond B 277:1289–1298

    Article  Google Scholar 

  • Kull T, Hutchings MJ (2006) A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol Conserv 129:31–39

    Article  Google Scholar 

  • Lee YI, Yang CK, Gebauer G (2015) The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently underestimated: novel evidence from sub-tropical Asia. Ann Bot 116:423–435

    Article  PubMed  PubMed Central  Google Scholar 

  • Liltved WR, Johnson SD (2012) The cape orchids. Hardcover, 2 vols.: vol. 1 xix + 1–484; vol. 2 vi + 485–1022 pp. Sandstone Editions, Cape Town

    Google Scholar 

  • Linde CC, Phillips RD, Crisp MD et al (2014) Congruent species delineation of Tulasnella using multiple loci and methods. New Phytol 201:6–12

    Article  PubMed  Google Scholar 

  • Lurgi M, Brook BW, Saltré F et al (2015) Modelling range dynamics under global change: which framework and why? Methods Ecol Evol 6:247–256

    Article  Google Scholar 

  • Ma M, Tan TK, Wong SM (2003) Identification and molecular phylogeny of Epulorhiza isolates from tropical orchids. Mycol Res 107:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Martos F, Dulormne M, Pailler T et al (2009) Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol 184:668–681

    Article  CAS  PubMed  Google Scholar 

  • Martos F, Munoz F, Pailler T et al (2012) The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol Ecol 21:5098–5109

    Article  PubMed  Google Scholar 

  • McCormick MK, Whigham DF, O’Neill JP (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438

    Article  Google Scholar 

  • McCormick MK, Jacquemyn H (2014) What constrains the distribution of orchid populations? New Phytol 202:392–400

    Article  Google Scholar 

  • McGlone MS, Duncan RP, Heenan PB (2001) Endemism, species selection and the origin and distribution of the vascular plant flora of New Zealand. J Biogeogr 28:199–216

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL et al (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247

    Article  Google Scholar 

  • Merckx VSFT (2013) Mycoheterotrophy: an introduction. In: Merckx VSFT (ed) Mycoheterotrophy: the biology of plants living on fungi. Springer, Berlin, pp 297–342

    Chapter  Google Scholar 

  • Motomura H, Selosse M-A, Martos F et al (2010) Mycoheterotrophy evolved from mixotrophic ancestors: evidence in Cymbidium (Orchidaceae). Ann Bot 106:573–581

    Article  PubMed  PubMed Central  Google Scholar 

  • Nurfadilah S, Swarts ND, Dixon KW et al (2013) Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Ann Bot 111:1233–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura-Tsujita Y, Gebauer G, Hashimoto T et al (2009) Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc R Soc Lond B 276:761–767

    Article  CAS  Google Scholar 

  • Oja J, Bahram M, Tedersoo L, Kull T, Kõljalg U (2015) Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytol 205:1608–1618

    Article  CAS  PubMed  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Oliveira SF, Bocayuva MF, Veloso TG et al (2014) Endophytic and mycorrhizal fungi associated with roots of endangered native orchids from the Atlantic forest, Brazil. Mycorrhiza 24:55–64

    Article  CAS  PubMed  Google Scholar 

  • Otero JT, Ackerman JD, Bayman P (2002) Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. Am J Bot 89:1852–1858

    Article  CAS  Google Scholar 

  • Otero JT, Flanagan NS, Herre EA et al (2007) Widespread mycorrhizal specificity correlates to mycorrhizal function in the neotropical epiphytic orchid Ionopsis utricularioides (Orchidaceae). Am J Bot 94:1944–1950

    Article  PubMed  Google Scholar 

  • Pandey M, Sharma J, Taylor DL et al (2013) A narrowly endemic photosynthetic orchid is non-specific in its mycorrhizal associations. Mol Ecol 22:2341–2354

    Article  PubMed  Google Scholar 

  • Pereira OL, Kasuya MCM, Borges AC et al (2005) Morphological and molecular characterization of mycorrhizal fungi isolated from neotropical orchids in Brazil. Can J Bot 83:54–65

    Article  CAS  Google Scholar 

  • Perkins AJ, McGee PA (1995) Distribution of the orchid mycorrhizal fungus, Rhizoctonia solani, in relation to its host Pterostylis acuminata, in the field. Aust J Bot 43:565–575

    Article  Google Scholar 

  • Phillips RD, Barrett MD, Dixon KW et al (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99:858–869

    Article  Google Scholar 

  • Phillips RD, Barrett MD, Dalziel EL et al (2016) Geographical range and host breadth of Sebacina orchid mycorrhizal fungi associating with Caladenia in South-Western Australia. Bot J Linn Soc 182:140–151

    Article  Google Scholar 

  • Ramsay RR, Dixon KW, Sivasithamparam K (1986) Patterns of infection and endophytes associated with Western Australian orchids. Lindleyana 1:203–214

    Google Scholar 

  • Ramsay RR, Sivasithamparam K, Dixon KW (1987) Anastomosis groups among Rhizoctonia-like endophytic fungi in southwestern Australian Pterostylis species (Orchidaceae). Lindleyana 2:161–166

    Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids: from seed to mycotrophic plant. Cambridge University Press, New York

    Book  Google Scholar 

  • Rasmussen HN, Whigham DF (1993) Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial ecology. Am J Bot 80:1374–1378

    Article  Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118:334–345

    Article  Google Scholar 

  • Reiter N, Whitfield J, Pollard G et al (2016) Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia. Plant Ecol 217:81–95

    Article  Google Scholar 

  • Roche SA, Carter RL, Peakall R et al (2010) A narrow group of monophyletic Tulasnella (Tulasnellaceae) symbiont lineages are associated with multiple species of Chiloglottis (Orchidaceae)—implications for orchid diversity. Am J Bot 97:1313–1327

    Article  PubMed  Google Scholar 

  • Rossini A, Quitadamo G (2003) Orchidee Spontanee nel Parco Nazionale del Gargano. Claudio Grenzi, Foggia

    Google Scholar 

  • Roy M, Watthana S, Stier A et al (2009) Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi. BMC Biol 7:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Selosse M-A, Weiß M, Jany JL et al (2002) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    Article  CAS  PubMed  Google Scholar 

  • Selosse M-A, Faccio G, Scappaticci G et al (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microb Ecol 47:416–426

    Article  CAS  PubMed  Google Scholar 

  • Selosse M-A, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70

    Article  CAS  PubMed  Google Scholar 

  • Selosse M-A, Martos F, Perry BA et al (2010) Saprotrophic fungal symbionts in tropical achlorophyllous orchids: finding treasures among the ‘molecular scraps’? Plant Signal Behav 5:1–5

    Article  Google Scholar 

  • Selosse M-A, Boullard B, Richardson D (2011) Noël Bernard (1874–1911): orchids to symbiosis in a dozen years, one century ago. Symbiosis 54:61–68

    Article  Google Scholar 

  • Selosse M-A (2014) The latest news from biological interactions in orchids: in love, head to toe. New Phytol 202:337–340

    Article  PubMed  Google Scholar 

  • Selosse M-A, Martos F (2014) Do chlorophyllous orchids heterotrophically use mycorrhizal fungal carbon? Trends Plant Sci 19:683–685

    Article  CAS  PubMed  Google Scholar 

  • Selosse M-A, Strullu-Derrien C, Martin F et al (2015) Plants and fungi: a 400 million year affair that shapes the biosphere? New Phytol 206:501–506

    Article  PubMed  Google Scholar 

  • Shan XC, Liew ECY, Weatherhead MA et al (2002) Characterisation and taxonomic placement of Rhizoctonia-like endophytes from orchid roots. Mycologia 94:230–239

    Article  CAS  PubMed  Google Scholar 

  • Shefferson RP, Taylor DL, Weiss M et al (2007) The evolutionary history of mycorrhizal specificity among lady’s slipper orchids. Evolution 61:1380–1390

    Article  PubMed  Google Scholar 

  • Shefferson RP, Cowden CC, McCormick MK et al (2010) Evolution of host breadth in broad interactions: mycorrhizal specificity in East Asian and North American rattlesnake plantains (Goodyera spp.) and their fungal hosts. Mol Ecol 19:3008–3017

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, Cambridge

    Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and the geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Suárez JP, Weiss M, Abele A et al (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270

    Article  PubMed  CAS  Google Scholar 

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556

    Article  PubMed  PubMed Central  Google Scholar 

  • Swarts ND, Sinclair EA, Francis A et al (2010) Ecological specialization in the orchid mycorrhizal interaction leads to rarity in the endangered terrestrial orchid Caladenia huegelii. Mol Ecol 19:3226–3242

    Article  CAS  PubMed  Google Scholar 

  • Takhtajan A (1986) Floristic regions of the world. University of California Press, Berkeley

    Google Scholar 

  • Taylor DL, Bruns TD, Hodges SA (2004) Evidence for mycorrhizal races in a cheating orchid. Proc R Soc Lond B Biol Sci 271:35–43

    Article  Google Scholar 

  • Těšitelová T, Těšitel J, Jersáková J et al (2012) Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology. Am J Bot 99:1020–1032

    Article  PubMed  Google Scholar 

  • Těšitelová T, Kotilínek M, Jersáková J et al (2015) Two widespread green Neottia species (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages. Mol Ecol 24:1122–1134

    Article  PubMed  CAS  Google Scholar 

  • Turnbull LA, Crawley MJ, Rees M (2000) Are plant populations seed-limited? A review of seed sowing experiments. Oikos 88:225–238

    Article  Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse M-A et al (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  CAS  Google Scholar 

  • Veldre V, Abarenkov K, Bahram M et al (2013) Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecol 6:256–268

    Article  Google Scholar 

  • Voyron S, Ercole E, Ghignone S et al (2017) Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands. New Phytol. 213:1428–1439

    Article  CAS  PubMed  Google Scholar 

  • Waterman RJ, Bidartondo MI, Stofberg J et al (2011) The effects of above- and belowground mutualisms on orchid speciation and coexistence. Am Nat 177:E54–E68

    Article  PubMed  Google Scholar 

  • Wright MM, Cross R, Cousens RD et al (2010) Taxonomic and functional characterization of fungi from Sebacina vermifera complex from common and rare orchids in the genus Caladenia. Mycorrhiza 20:375–390

    Article  PubMed  Google Scholar 

  • Yagame T, Funabiki E, Nagasawa E et al (2013) Identification and symbiotic ability of Psathyrellaceae fungi isolated from a photosynthetic orchid, Cremastra appendiculata (Orchidaceae). Am J Bot 100:1823–1830

    Article  PubMed  Google Scholar 

  • Yuan L, Yang ZL, Li S-Y et al (2010) Mycorrhizal specificity, preference, and plasticity of six slipper orchids from South Western China. Mycorrhiza 20:559–568

    Article  PubMed  Google Scholar 

  • Yukawa T, Ogura-Tsujita Y, Shefferson RP et al (2009) Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza. Am J Bot 96:1997–2009

    Article  PubMed  Google Scholar 

  • Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87:371–381

    Article  Google Scholar 

  • Waud M, Busschaert P, Lievens B et al (2016a) Specificity and localized distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol 20:155–165

    Article  Google Scholar 

  • Waud M, Wiegand T, Brys R et al (2016b) Nonrandom seedling establishment corresponds with distance-dependent decline in mycorrhizal abundance in two terrestrial orchids. New Phytol 211:255–264

    Article  CAS  PubMed  Google Scholar 

  • Waud M, Brys R, Van Landuyt W et al. (2017) Mycorrhizal specificity does not limit the distribution of a rare orchid species. Mol Ecol. 26:1687–1701

    Google Scholar 

  • Weiss M, Waller F, Zuccaro A et al (2016) Sebacinales—one thousand and one interactions with land plants. New Phytol 211:20–40

    Article  PubMed  Google Scholar 

  • Zhang L, Chen J, Lv Y et al (2012) Mycena sp., a mycorrhizal fungus of the orchid Dendrobium officinale. Mycol Prog 11:395–401

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for the comments of two anonymous reviewers that improved the quality of the manuscript. KJD is currently funded by a Marie Sklodowska-Curie Fellowship from the European Commission (Grant 655889: ‘MYCRONICHE’). MAS is currently funded by the Polish National Science Centre (Maestro7-NZ project entitled Orchidomics).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Jacquemyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jacquemyn, H., Duffy, K.J., Selosse, MA. (2017). Biogeography of Orchid Mycorrhizas. In: Tedersoo, L. (eds) Biogeography of Mycorrhizal Symbiosis. Ecological Studies, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-56363-3_8

Download citation

Publish with us

Policies and ethics