Skip to main content

A Practical Design Search for Optimal Floor Surface Finishes—A Case Study

  • Chapter
  • First Online:
Pedestrian Fall Safety Assessments

Abstract

Although many causes are involved in the slip and fall incidents , footpaths and walkways have a major effect on safe ambulation of the pedestrians. Pedestrian floorsurfaces should be constructed to provide comfortable walking environments and good traction functioning against any slippery condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AS/NZS 4663. (2004). Slip resistance measurements of existing pedestrian surfaces. Australian Standards AS/NZS 4663.

    Google Scholar 

  • Bewoor, A. K., & Kulkarni, V. A. (2009). Metrology & measurement, Tata McGraw-Hill Education.

    Google Scholar 

  • British Standards Institution (BSI). (1988). Assessment of surface texture, Part 1. Methods and instrumentation. BS 1134. London, UK: British Standards Institution.

    Google Scholar 

  • Chaffin, D. B., Woldstad, J. C., & Trujillo, A. (1992). Floor/shoe slip resistance measurement. Journal of American Industrial Hygiene Association, 53(5), 283–289.

    Article  Google Scholar 

  • Chang, W. R. (2001). The effects of surface roughness and contaminant on the dynamic friction of porcelain tile. Applied Ergonomics, 32(2), 173–184.

    Article  Google Scholar 

  • Chang, W. R. (2002). The effects of surface roughness and contaminants on the dynamic friction between porcelain tile and vulcanized rubber. Safety Science, 40, 577–591.

    Article  Google Scholar 

  • Chang, W. R., Cotnam, J. P., & Matz, S. (2003). Field evaluation of two commonly used slip meters. Applied Ergonomics, 34(1), 51–60.

    Article  Google Scholar 

  • Chang, W. R., Huang, Y. H., Li, K. W., Filiaggi, A., & Courtney, T. K. (2008). Assessing slipperiness in fast-food restaurants in the USA using friction variation, friction level and perception rating. Applied Ergonomics, 39(3), 359–367.

    Article  Google Scholar 

  • Chang, W. R., Kim, I. J., Manning, D. P., & Bunterngchit, Y. (2001). The role of surface roughness in the measurement of slipperiness. Ergonomics, 44, 1200–1216.

    Article  Google Scholar 

  • Derler, S., Kausch, F., & Huber, R. (2008). Analysis of factors influencing the friction coefficients of shoe sole materials. Safety Science, 46(5), 822–832.

    Article  Google Scholar 

  • Harris, G. W., & Shaw, S. R. (1988). Slip resistance of floors: Users’ opinions, Tortus instrument readings and roughness measurement. Journal of Occupational Accidents, 9(4), 287–298.

    Article  Google Scholar 

  • Hoang, K., & Stevenson, M. G. (1981). Measurement of slipperiness of walkway surfaces. Report. IE (University of New South Wales. School of Mechanical and Industrial Engineering); No. 1981. 1.

    Google Scholar 

  • Hoang, K., Stevenson, M. G., Nhieu, J., & Bunterngchit, Y. (1987). Dynamic friction at heel strike between a range of protective footwear and non-slip floor surface (Report No. CSS/1/87). Center for Safety Science, University of New South Wales, Australia, July.

    Google Scholar 

  • Hoang, K., Stevenson, M. G., & Willgoss, R. (1985). Measurement of dynamic friction between shoe soles and walkway surfaces. In Proceedings of the 22nd Annual Conference of the Ergonomics Society of ANZ (pp. 265–171). Toowoomba, December.

    Google Scholar 

  • International Organization for Standardization (ISO). (1998). Geometrical product specifications (GPS)—Surface texture: Profile method—Terms, definitions and surface texture parameters. ISO 4287: 1997. Switzerland: International Organization of Standardization.

    Google Scholar 

  • Johnson, K. L. (1985). Contact mechanics. Oxford, Clarendon: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Kim, I. J. (1996a). Tribological concepts for the investigation of the pedestrian slipping and falling accidents—Part I. In International occupational injury symposium (p. 101). Sydney, Australia. February.

    Google Scholar 

  • Kim, I. J. (1996b). Tribological approach for the analysis of pedestrian slip hazard—II. In Proceedings of the ‘96 Spring conference of Korean Institute of industrial engineers, April, Seoul, Korea, 279–285.

    Google Scholar 

  • Kim, I. J. (1996c). Microscopic investigation to analyze the slip resistance of shoes. In Proceedings of the 4th Pan Pacific conference on occupational ergonomics (pp. 68–73). Taiwan, ROC, November.

    Google Scholar 

  • Kim, I. J. (1996d). Microscopic observation of shoe heels for pedestrian slip hazard investigation. In Proceedings of the 1st annual international conference on industrial application and practice (pp. 243–250). Texas, USA, December.

    Google Scholar 

  • Kim, I. J., & Smith R. (1999). The relationship between wear, surface topography characteristics and coefficient of friction as a means of assessing the slip hazards. In 2nd Asia-Pacific conference on industrial engineering and management systems (APIEMS99) (pp. 155–161). Ashikaga, Japan. October.

    Google Scholar 

  • Kim, I. J. (2004a). Development of a new analyzing model for quantifying pedestrian slip resistance characteristics: Part I—Basic concepts and theories. Industrial Journal of Industrial Ergonomics, 33(5), 395–401.

    Article  Google Scholar 

  • Kim, I. J. (2004b). Development of a new analyzing model for quantifying pedestrian slip resistance characteristics: Part II—Experiments and validations. Industrial Journal of Industrial Ergonomics, 33(5), 403–414.

    Article  Google Scholar 

  • Kim, I. J. (2005a). Combined effects of friction and wear behaviors on fall safety measures. In Contemporary ergonomics 2005 (pp. 498–502). Taylor & Francis.

    Google Scholar 

  • Kim, I. J. (2005b). A new understanding on the shoe wear mechanism and its significance on slip resistance property. In Contemporary ergonomics 2005 (503–508). Taylor & Francis.

    Google Scholar 

  • Kim, I. J. (2006a). The current hiatus in fall safety measures. In W. Karwowski (Ed.), International encyclopedia of ergonomics and human factors-2005 (pp. 2572–2576). USA: Taylor & Francis Group, LLC.

    Google Scholar 

  • Kim, I. J. (2006b). A new paradigm for characterizing slip resistance properties. In W. Karwowski (Ed.), International encyclopedia of ergonomics and human factors-2005 (pp. 2735–2740). USA: Taylor & Francis Group, LLC.

    Google Scholar 

  • Kim, I. J. (2015a). Practical design search for optimal floor surface finishes to prevent fall incidents. In B. Evans (Ed.), Accidental falls: Risk factors, prevention strategies and long-term outcomes (pp. 80–103). Hauppauge, NY, USA: Nova Science Publishers, Inc. (Chapter 5).

    Google Scholar 

  • Kim, I. J. (2015b). Wear observation of shoe surfaces: Application for slip and fall safety assessments. Tribology Transactions, 58(3), 407–417.

    Article  Google Scholar 

  • Kim, I. J. (2015b). Slip-resistance measurements for assessing pedestrian falls: Facts and fallacies. In B. Evans (Ed.), Accidental falls: Risk factors, prevention strategies and long-term outcomes (pp. 105–125). Hauppauge, NY, USA: Nova Science Publishers, Inc. (Chapter 6).

    Google Scholar 

  • Kim, I. J. (2015d). Research challenges on slip-resistance measurements for assessing pedestrian fall incidents. Journal of Ergonomics, 5(3). doi:10.4172/2165-7556.1000e142

  • Kim, I. J. (2016a). A study on wear development of floor surfaces: Impact on pedestrian walkway slip-resistance performance. Tribology International, 95, 316–323.

    Article  Google Scholar 

  • Kim, I. J. (2016b). Identifying shoe wear mechanisms and associated tribological characteristics: The importance for slip resistance evaluation. Wear, 360–361, 77–86.

    Article  Google Scholar 

  • Kim, I. J., Hsiao, H., & Simeonov, P. (2013). Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces. Applied Ergonomics, 44(1), 58–64.

    Article  Google Scholar 

  • Kim, I. J., & Nagata, H. (2008a). Nature of the shoe wear: Its uniqueness, complexity and effects on slip resistance properties. In Contemporary Ergonomics 2008 (Vol. 15, pp. 728–734). Taylor & Francis.

    Google Scholar 

  • Kim, I. J., & Nagata, H. (2008b). Research on slip resistance measurements—A new challenge. Industry Health, 46(1), 66–76.

    Article  Google Scholar 

  • Kim, I. J., & Smith, R. (1998a). A study of the comparative geometry mating between the surfaces of the shoe and floor in pedestrian slip resistance measurements. In The 5th Pan-Pacific conference on occupational ergonomics (pp. 34–37). Kitakyushu, Japan. July.

    Google Scholar 

  • Kim, I. J., & Smith, R. (1998b). Tribological characterization of the frictional force component in pedestrian slip resistance measurements. In Third world congress of biomechanics (WCB98). Hokkaido, Japan. August.

    Google Scholar 

  • Kim, I. J., & Smith, R. (2000). Observation of the floor surface topography changes in pedestrian slip resistance measurements. Industrial Journal of Industrial Ergonomics, 26(6), 581–601.

    Article  Google Scholar 

  • Kim, I. J., & Smith, R. (2001a). A critical analysis on the friction measuring concept for slip resistance evaluation. In ASTM symposium on the metrology of pedestrian locomotion and slip resistance (pp. 1–14). West Conshodocken, Pennsylvania, USA: ASTM Headquarters. June.

    Google Scholar 

  • Kim, I. J., & Smith, R. (2001b). A study for characterising topography changes of shoe surfaces in the early stage of slip resistance measurements—Bearing area curve. In 6th Pan-Pacific conference on occupational ergonomics (pp. 299–303). Beijing, P.R. China. August.

    Google Scholar 

  • Kim, I. J., & Smith, R. (2001c). Three-dimensional analysis of floor surface wear during slip resistance measurements. In 6th Pan-Pacific conference on occupational ergonomics (304–308). Beijing, P.R. China. August.

    Google Scholar 

  • Kim, I. J., & Smith, R. (2003). A critical analysis of the relationship between shoe-floor wear and pedestrian/walkway slip resistance. In: Marpet, M. I., & Sapienza, M.A. (Eds.), Metrology of pedestrian locomotion and slip resistance, American society of testing and materials. Special Technical Publication (Vol. 1424, pp. 33–48). Philadelphia, USA: ASTM International.

    Google Scholar 

  • Kim, I. J., Smith, R., & Nagata, H. (2001). Microscopic observations of the progressive wear on the shoe surfaces which affect the slip resistance characteristics. Industrial Journal of Industrial Ergonomics, 28(1), 17–29.

    Article  Google Scholar 

  • Leclercq, S., & Saulnier, H. (2002). Floor slip resistance changes in food sector workshops: prevailing role played by fouling. Safety Science, 40(7–8), 659–673.

    Article  Google Scholar 

  • Li, K. W., Chang, W. R., Leamon, T. B., & Chen, C. J. (2004). Floor slipperiness measurement: friction coefficient, roughness of floors, and subjective perception under spillage conditions. Safety Science, 42(6), 547–565.

    Article  Google Scholar 

  • Manning, D. P., & Jones, C. (1994). The superior slip resistance of footwear soling compound T66/103. Safety Science, 18(1), 45–60.

    Article  Google Scholar 

  • Manning, D. P., & Jones, C. (2001). The effect of roughness, floor polish, water, oil and ice on underfoot friction: Current safety footwear solings are less slip resistant than microcellular polyurethane. Applied Ergonomics, 32(2), 185–196.

    Article  Google Scholar 

  • Moore, D. F. (1972). The friction and lubrication of elastomers, International series of monographs on materials science and technology (Vol. 9). Headington Hill Hall, Oxford: Pergamon Press Ltd.

    Google Scholar 

  • Moore, D. F. (1975). Principles and application of tribology. Oxford: Pergamon Press.

    Google Scholar 

  • Perkins, P. J., & Wilson, M. P. (1983). Slip resistance testing of shoes—New development. Ergonomics, 26(1), 73–82.

    Article  Google Scholar 

  • Proctor, T. D. (1993). Slipping accidents in Great Britain—An update. Safety Science, 16(3–4), 367–377.

    Article  Google Scholar 

  • Stachowiak, G., & Batchelor, A. (2005). Engineering tribology (3rd ed., pp. 461–499). Butterworth-Heinemann, Elsevier Inc. (Chapter 10).

    Google Scholar 

  • Strandberg, L. (1983). On accident analysis and slip-resistance measurement. Ergonomics, 26(1), 11–32.

    Article  MathSciNet  Google Scholar 

  • Strandberg, L., & Lanshammar, H. (1981). The dynamics of slipping accidents. Journal of Occupational Accidents, 3, 153–162.

    Article  Google Scholar 

  • Thomas, T. R. (1999). Rough surfaces (2nd ed.). London, UK: Imperial College Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ju Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kim, IJ. (2017). A Practical Design Search for Optimal Floor Surface Finishes—A Case Study. In: Pedestrian Fall Safety Assessments. Springer, Cham. https://doi.org/10.1007/978-3-319-56242-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56242-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56241-4

  • Online ISBN: 978-3-319-56242-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics