Skip to main content

Physical and Morphological Changes to Wetlands Induced by Coastal Structures

  • Chapter
  • First Online:

Part of the book series: Coastal Research Library ((COASTALRL,volume 21))

Abstract

This document is focused on the establishment of a methodology to assess erosive processes in a coastal wetland. Particularly, it analyses the spit that separates the lagoon from the sea, elaborating a diagnostic process that helps to characterize the effect of the coastal infrastructure in morphological changes in a short and medium-term. Elements such as the morphology, the wave climate, the hydrodynamic and the evolution monitoring of coastline are key elements to understand whether a coastal wetland is on equilibrium or in the contrary, its state of vulnerability is such that in the slightest change in physics conditions will produce negative effects by the system instability.

Generally, it describes the procedure performed to properly understand the relation between modifications of coastal processes and the response of a coastal environment. It uses numerical and theoretical models to assess the behavior of the waterfront, considering the historical changes that have occurred to ultimately predict variations of the spit as consequence of the establishment of new civil works. Finally, it concludes with this method of analysis that the evaluated study case will be affected by the works of action to be developed for facilitating the navigability conditions of a new port currently under construction in the city of Barranquilla, Colombia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Brunn P (1994) Engineering projects in coastal lagoons. In: Kjerfve B (ed) Coastal lagoon process. Elsevier Oceanography Series. Netherlands, 60, p 27

    Google Scholar 

  • Brunn P, Gerritsen F (1961) Stability of coastal inlets. In: Proceedings of the 7th on coastal engineering, pp 386–417

    Google Scholar 

  • Brunn P, Gerritsen F (1961) Stability of coastal inlets. In: Council on Wave Research (ed) Proceedings of the 7th on coastal engineering. North-Holland Publishing Company, The Hague, pp 386–417

    Google Scholar 

  • Builes, Ximena Arguelles, Vilma Álvarez y Carlos Ramos. Institute for Hydraulic and Environmental studies (IDEHA) and EAFIT University for the help during the field work

    Google Scholar 

  • Cartwright D (2001) Tides: a scientific history. Cambridge University Press, Cambridge

    Google Scholar 

  • CIOH (2010) Climatología de los principales puertos del Caribe colombiano. DIMAR, 19 https://www.cioh.org.co/meteorologia/Climatologia

    Google Scholar 

  • Cooper J, Pilkey O (2004) Longshore drift: trapped in an expected Universe. J Sediment Res 74(5):599–606

    Google Scholar 

  • COP07, R (1999) Séptima reunión de la conferencia de las partes contratantes en la convención de humedales. (COP-7) San José de Costa Rica

    Google Scholar 

  • Del Rio L, Gracia F (2009) Erosion risk assessment of active coastal cliffs in temperature environments. Geomorphology 112:82–95

    Article  Google Scholar 

  • Dronkers J, Schonfeld J (1959) Tidal computations in shallow water. Report on hydrostatic levelling across the Westerschelde. Rijswaterstaat, Netherlands, p 88

    Google Scholar 

  • Hsu JRC, Evans C (2009) Parabolic bay shapes and applications. Proc. Instn Civ. Engrs 87:557–570 

    Google Scholar 

  • Inman D (1952) Measures for describing size of sediments. J Sediment Res 22:125–145

    Google Scholar 

  • Javrejeva S, Moore J, Grinsted A (2012) Sea level projections to AD2500 with a new generation of climate change scenarios. Glob Planet Chang 80–81:14–20

    Article  Google Scholar 

  • Kjerfve B (1986) Comparative oceanography of coastal lagoons. In: Wolfe DA (ed) Estuarine variability. Academic Press, The Netherlands, pp 63–81

    Chapter  Google Scholar 

  • Komar P (1998) Beach process and sedimentation. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Krumbein W (1936) Application of logarithmic momentos to size frequen-cy distributions of sediments. J Sediment Petrol 6:35–47

    Google Scholar 

  • Krumbein W (1947) Shore process and beach characteristics. In: US Beach Erosion Board (ed) Technical memorandum n.3. Engineer Research and Development Center, US., p 35

    Google Scholar 

  • Le Provost C, Genco M, Lyard F, Vincent P, Canceil P (1994) Tidal spectroscopy of the world ocean tides from a finite element hydrodynamic model. J Geophys Res 99(C12):24777–24798

    Article  Google Scholar 

  • LeBlond P (1979) An explanation of the logarithmic spiral plan shape of headland-bay beaches. J Sediment Petrol 49(4):1093–1100

    Google Scholar 

  • Martínez JO, Pilkey OH Jr, Neal WJ (1990) Rapid formation of large coastal sand bodies after emplacement of Magdalena River Jetties, Nothern, Colombia. Environ Geol Water Sci 16(3):187–194

    Article  Google Scholar 

  • Mitch W, Gosselink J (1993) Wetlands, 2nd edn. Van Norstrand Re-inthold, New York. 722 pp

    Google Scholar 

  • Raabe ALA, Klein AH, González M, Medina R (2010) MEPBAY and SMC: software tools to support different operational levels of headland-bay beach in coastal engineering projects. Coastal Eng 57:213–226

    Article  Google Scholar 

  • Ramsar COP07 (1999) Séptima reunión de la conferencia de las partes contratantes en la convención de humedales (COP-7). San José de Costa Rica

    Google Scholar 

  • Ruiz G (2004) Modelos para determinar la geomorfología de la línea de playa en costas en equilibrio. Instituto Politécnico Nacional. Tesis, 261pp

    Google Scholar 

  • Ruiz G (2006) Caracterización geomorfológica de la línea de costa del Estado de Quintana Roo, México (Caso Cancún). En memorias del XIX Congreso Nacional de Hidráulica (CD), 6 pp

    Google Scholar 

  • Ruiz G (2009) Determinación de los estados morfodinámicos de segmentos de playa que poseen obstáculos sumergidos y emergidos. Universidad Nacional Autónoma de México. Tesis, 198 pp

    Google Scholar 

  • Ruiz G, Rivillas-Ospina G, Mariño I, Posada G (2016) Sandy: a Matlab tool to estimate the sediment size distribution from a sieve analysis. Comput Geosci 92:104–116

    Google Scholar 

  • Silvester R, Tsuchiya Y, Shibano Y (1980) Zeta Bays, pocket beaches and headland control. Proceedings 17th. Conference on Coastal Engineering, ASCE:, pp 1306–1319

    Google Scholar 

  • Tanner WF (1958) The equilibrium beach. Eos Trans Am Geophys Union 39:889–891

    Article  Google Scholar 

  • Thieler ER, Himmelstoss EA, Zichichi JL, Ergul A (2009) The digital Shoreline Analysis System (DSAS) Version 4.0 – an ArcGIS extension for calculating shoreline change. Open-File Report. US Geological Survey Report No. 2008–1278: http://woodshole.er.usgs.gov/projectpages/dsas/version4/

  • Thornbury WD (1954) Principles of geomorphology. John Wiley and Sons, Inc., Hoboken

    Google Scholar 

  • Uittenbogaard R., Van Kester J, Stelling G (1992) Report Z81 implementation of three turbulence models in 3D–TRISULA for rectangular grids. Delft Hydraulics. Netherlands

    Google Scholar 

  • Van Rijn L (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, Amsterdam

    Google Scholar 

  • Woodroffe C (2003) Coasts: forms, process and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Yasso W (1965) Plan geometry of headland bay beaches. J Geol Div 73:702–714

    Article  Google Scholar 

Download references

Acknowledgements

To coastal engineering group of the Universidad del Norte, integrated by Marianella Bolivar, Alejandra Builes, Ximena Arguelles, Vilma Álvarez y Carlos Ramos. Institute for Hydraulic and Environmental studies (IDEHA) and EAFIT University for the help during the field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Daniel Rivillas-Ospina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rivillas-Ospina, G.D. et al. (2017). Physical and Morphological Changes to Wetlands Induced by Coastal Structures. In: Finkl, C., Makowski, C. (eds) Coastal Wetlands: Alteration and Remediation. Coastal Research Library, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-56179-0_9

Download citation

Publish with us

Policies and ethics