Skip to main content

Purification of Pluripotent Stem Cell-Derived Cardiomyocytes for Safe Cardiac Regeneration

  • Chapter
  • First Online:
Cardiac Regeneration

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 4))

Abstract

Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced PSCs (iPSCs), have the potential to differentiate into various cells types and may be used as cell sources for regenerative medicine in the context of various diseases, including severe heart failure. However, one of the biggest hurdles in the use of human PSCs for clinical applications is tumor formation due to contamination with residual tumor-forming cells, primarily undifferentiated PSCs. In addition, hundreds of millions of cardiomyocytes are required for heart repair. Two approaches have been developed for achievement of safer cardiac regenerative therapy using human PSCs: (1) selective elimination of residual tumor-forming cells before cell transplantation and (2) purification of PSC-derived cardiomyocytes. Many methodologies, including genetic and nongenetic modification, have been developed using these strategies. In this chapter, we focus on the current status of selective elimination of residual PSCs and purification of cardiomyocytes for safe stem cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aalto-Setala K, Fuerstenau-Sharp M, Zimmermann ME, Stark K, Jentsch N, Klingenstein M et al (2015) Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells. PLoS One 10(5):e0126596

    Google Scholar 

  • Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C (2007) Transgenic enrichment of Cardiomyocytes from human embryonic stem cells. Mol Ther 15(11):2027–2036

    CAS  PubMed  Google Scholar 

  • Ban K (2013) Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation 128:1897–1909. doi:10.1161/CIRCULATIONAHA.113.004228

    Article  CAS  PubMed  Google Scholar 

  • Ben-David U (2013) Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 12:162–179

    Google Scholar 

  • Ben-David U, Nudel N, Benvenisty N (2013) Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat Commun 4:1992

    PubMed  Google Scholar 

  • Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167:723–734. doi:10.1083/jcb.200405144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10(1):16–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD et al (2014) Chemically defined generation of human cardiomyocytes. Nat Methods 11(8):855–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A et al (2016) Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22(5):547–556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB (2014) Intracellular alpha-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518(7539):413–416

    PubMed  PubMed Central  Google Scholar 

  • Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choo AB (2008) Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells 26:1454–1463. doi:10.1634/stemcells.2007-0576

    Article  CAS  PubMed  Google Scholar 

  • Dabir Deepa V, Hasson Samuel A, Setoguchi K, Johnson Meghan E, Wongkongkathep P, Douglas Colin J et al (2013) A small molecule inhibitor of redox-regulated protein translocation into mitochondria. Dev Cell 25(1):81–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG et al (2011) SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol 29(11):1011–1018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek J, Cheng IF, Chowdhury A, Wozny K, Balleininger M, Reinhold R et al (2015) Cardiac-specific succinate dehydrogenase deficiency in Barth syndrome. EMBO Mol Med 8(2):139–154

    PubMed Central  Google Scholar 

  • Elliott DA, Braam SR, Koutsis K, Ng ES, Jenny R, Lagerqvist EL et al (2011) NKX2-5eGFP/w hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat Methods 8(12):1037–1040

    CAS  PubMed  Google Scholar 

  • Folmes Clifford DL, Nelson Timothy J, Martinez-Fernandez A, Arrell DK, Lindor Jelena Z, Dzeja Petras P et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14(2):264–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fong CY, Peh GS, Gauthaman K, Bongso A (2009) Separation of SSEA-4 and TRA-1-60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Stem Cell Rev 5:72–80. doi:10.1007/s12015-009-9054-4

    Article  CAS  Google Scholar 

  • Fonoudi H, Ansari H, Abbasalizadeh S, Larijani MR, Kiani S, Hashemizadeh S et al (2015) A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells. Stem Cells Transl Med 4(12):1482–1494

    PubMed  PubMed Central  Google Scholar 

  • Funakoshi S, Miki K, Takaki T, Okubo C, Hatani T, Chonabayashi K et al (2016) Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep 6:19111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gassanov N, Er F, Zagidullin N, Hoppe UC (2004) Endothelin induces differentiation of ANP-EGFP expressing embryonic stem cells towards a pacemaker phenotype. FASEB J 18(14):1710–1712

    CAS  PubMed  Google Scholar 

  • Gerbin KA, Yang X, Murry CE, Coulombe KL (2015) Enhanced electrical integration of engineered human myocardium via intramyocardial versus epicardial delivery in infarcted rat hearts. PLoS One 10(7):e0131446

    PubMed  PubMed Central  Google Scholar 

  • Hattori F (2010) Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods 7:61–66. doi:10.1038/nmeth.1403

    Article  CAS  PubMed  Google Scholar 

  • Hemmi N, Tohyama S, Nakajima K, Kanazawa H, Suzuki T, Hattori F et al (2014) A massive suspension culture system with metabolic purification for human pluripotent stem cell-derived cardiomyocytes. Stem Cells Transl Med 3(12):1473–1483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2(3):198–210

    PubMed  Google Scholar 

  • Hidaka K, Shirai M, Lee JK, Wakayama T, Kodama I, Schneider MD et al (2009) The cellular prion protein identifies bipotential cardiomyogenic progenitors. Circ Res 106(1):111–119

    PubMed  Google Scholar 

  • Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S et al (2015) Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349(6251):982–986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huber I, Itzhaki I, Caspi O, Arbel G, Tzukerman M, Gepstein A et al (2007) Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J 21(10):2551–2563

    CAS  PubMed  Google Scholar 

  • Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A et al (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8(2):228–240

    CAS  PubMed  Google Scholar 

  • Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T et al (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126(11 Suppl 1):S29–S37

    CAS  PubMed  Google Scholar 

  • Kawamura A, Miyagawa S, Fukushima S, Kawamura T, Kashiyama N, Ito E et al (2016) Teratocarcinomas arising from allogeneic induced pluripotent stem cell-derived cardiac tissue constructs provoked host immune rejection in mice. Sci Rep 6:19464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kodo K, Ong SG, Jahanbani F, Termglinchan V, Hirono K, InanlooRahatloo K et al (2016) iPSC-derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol 18(10):1031–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondoh H, Lleonart ME, Nakashima Y, Yokode M, Tanaka M, Bernard D et al (2007) A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal 9(3):293–299

    CAS  PubMed  Google Scholar 

  • Kuroda T, Yasuda S, Kusakawa S, Hirata N, Kanda Y, Suzuki K et al (2012) Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells. PLoS One 7(5):e37342

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Laake LW, Qian L, Cheng P, Huang Y, Hsiao EC, Conklin BR et al (2010) Reporter-based isolation of induced pluripotent stem cell- and embryonic stem cell-derived cardiac progenitors reveals limited Gene expression variance. Circ Res 107(3):340–347

    PubMed  PubMed Central  Google Scholar 

  • Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25(9):1015–1024

    CAS  PubMed  Google Scholar 

  • Lee MO (2013) Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci U S A 110:E3281–E3290. doi:10.1073/pnas.1303669110

    Article  PubMed  PubMed Central  Google Scholar 

  • Lian X (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci 109:E1848–E1857. doi:10.1073/pnas.1200250109

    Article  PubMed  PubMed Central  Google Scholar 

  • Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Goldfarb S et al (2015) The registry of the international society for heart and lung transplantation: thirty-second official adult heart transplantation report–2015; focus theme: early graft failure. J Heart Lung Transplant 34(10):1244–1254

    PubMed  Google Scholar 

  • Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ et al (2011) High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol 301(5):H2006–H2017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marsboom G, Zhang G-F, Pohl-Avila N, Zhang Y, Yuan Y, Kang H et al (2016) Glutamine metabolism regulates the Pluripotency transcription factor OCT4. Cell Rep 16(2):323–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsa E, Burridge PW, Yu KH, Ahrens JH, Termglinchan V, Wu H et al (2016) Transcriptome profiling of patient-specific human iPSC-cardiomyocytes predicts individual drug safety and efficacy responses in vitro. Cell Stem Cell 19(3):311–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miki K, Endo K, Takahashi S, Funakoshi S, Takei I, Katayama S et al (2015) Efficient detection and purification of cell populations using synthetic microRNA switches. Cell Stem Cell 16(6):699–711

    CAS  PubMed  Google Scholar 

  • Minami I, Yamada K, Otsuji TG, Yamamoto T, Shen Y, Otsuka S et al (2012) A small molecule that promotes cardiac differentiation of human pluripotent stem cells under defined, cytokine- and xeno-free conditions. Cell Rep 2(5):1448–1460

    CAS  PubMed  Google Scholar 

  • Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27(8):743–745

    CAS  PubMed  Google Scholar 

  • Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D et al (2015) Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21(3):392–402

    CAS  PubMed  Google Scholar 

  • Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459

    CAS  PubMed  Google Scholar 

  • Nguyen Doan C, Hookway Tracy A, Wu Q, Jha R, Preininger Marcela K, Chen X et al (2014) Microscale generation of cardiospheres promotes robust enrichment of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Reports 3(2):260–268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nori S, Okada Y, Nishimura S, Sasaki T, Itakura G, Kobayashi Y et al (2015) Long-term safety issues of iPSC-based cell therapy in a spinal cord injury model: oncogenic transformation with epithelial-mesenchymal transition. Stem Cell Reports. 4(3):360–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26(3):313–315

    CAS  PubMed  Google Scholar 

  • Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R et al (2011) The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 22(1):168–177

    PubMed  PubMed Central  Google Scholar 

  • Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453(7193):322–329

    CAS  PubMed  Google Scholar 

  • Rust W, Balakrishnan T, Zweigerdt R (2009) Cardiomyocyte enrichment from human embryonic stem cell cultures by selection of ALCAM surface expression. Regen Med 4(2):225–237

    CAS  PubMed  Google Scholar 

  • Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J et al (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489(7415):322–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiba Y, Filice D, Fernandes S, Minami E, Dupras SK, Biber BV et al (2014) Electrical integration of human embryonic stem cell-derived cardiomyocytes in a guinea pig chronic infarct model. J Cardiovasc Pharmacol Ther 19(4):368–381

    PubMed  PubMed Central  Google Scholar 

  • Shiraki N, Shiraki Y, Tsuyama T, Obata F, Miura M, Nagae G et al (2014) Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells. Cell Metab 19(5):p780–p794

    Google Scholar 

  • Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S et al (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339(6116):222–226

    PubMed  Google Scholar 

  • Takahashi K (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi:10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  • Tan HL, Fong WJ, Lee EH, Yap M, Choo A (2009) mAb 84, a cytotoxic antibody that kills undifferentiated human embryonic stem cells via oncosis. Stem Cells 27:1792–1801. doi:10.1002/stem.109

    Article  CAS  PubMed  Google Scholar 

  • Tang C (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829–834. doi:10.1038/nbt.1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tano K, Yasuda S, Kuroda T, Saito H, Umezawa A, Sato Y (2014) A novel in vitro method for detecting undifferentiated human pluripotent stem cells as impurities in cell therapy products using a highly efficient culture system. PLoS One 9(10):e110496

    PubMed  PubMed Central  Google Scholar 

  • Tateno H, Onuma Y, Ito Y, Minoshima F, Saito S, Shimizu M et al (2015) Elimination of tumorigenic human pluripotent stem cells by a recombinant lectin-toxin fusion protein. Stem Cell Rep 4(5):811–820

    CAS  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    CAS  PubMed  Google Scholar 

  • Tohyama S (2013) Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 12:127–137. doi:10.1016/j.stem.2012.09.013

    Article  CAS  PubMed  Google Scholar 

  • Tohyama S, Fujita J, Hishiki T, Matsuura T, Hattori F, Ohno R et al (2016) Glutamine oxidation is indispensable for survival of human pluripotent stem cells. Cell Metab 23(4):663–674

    CAS  PubMed  Google Scholar 

  • Uosaki H (2011) Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One 6:e23657. doi:10.1371/journal.pone.0023657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uosaki H, Cahan P, Lee Dong I, Wang S, Miyamoto M, Fernandez L et al (2015) Transcriptional landscape of cardiomyocyte maturation. Cell Rep 13(8):1705–1716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight SL (2009) Dependence of mouse embryonic stem cells on threonine catabolism. Science 325(5939):435–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willems E, Spiering S, Davidovics H, Lanier M, Xia Z, Dawson M et al (2011) Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm. Circ Res 109(4):360–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu C, Police S, Hassanipour M, Gold JD (2006) Cardiac bodies: a novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. Stem Cells Dev 15(5):631–639

    CAS  PubMed  Google Scholar 

  • Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96

    CAS  PubMed  Google Scholar 

  • Ye L, Chang Y-H, Xiong Q, Zhang P, Zhang L, Somasundaram P et al (2014) Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 15(6):750–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK et al (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111(9):1125–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Pan Y, Qin G, Chen L, Chatterjee T, Weintraub N et al (2014) Inhibition of stearoyl-coA desaturase selectively eliminates tumorigenic Nanog-positive cells: improving the safety of iPS cell transplantation to myocardium. Cell Cycle 13(5):762–771

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The present work was supported by the Highway Program for Realization of Regenerative Medicine from Japan Science and Technology Agency (to K.F.) and SENSHIN Medical Research Foundation (to S.T.).

Compliance with Ethical Standards

Conflict of Interest

The Shugo Tohyama declare that they have no conflict of interest. Keiichi Fukuda is a cofounder of Heartseed Inc.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Fukuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tohyama, S., Fukuda, K. (2017). Purification of Pluripotent Stem Cell-Derived Cardiomyocytes for Safe Cardiac Regeneration. In: Ieda, M., Zimmermann, WH. (eds) Cardiac Regeneration. Cardiac and Vascular Biology, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-56106-6_8

Download citation

Publish with us

Policies and ethics