Skip to main content

Nutritional Programming of Metabolic Syndrome: Role of Nutrients in Shaping the Epigenetics

  • Reference work entry
  • First Online:
Book cover Handbook of Nutrition, Diet, and Epigenetics

Abstract

Increased prevalence of metabolic syndrome like obesity, heart diseases, and diabetes is an emerging public health problem. Susceptibility to such diseases has always been attributed to environmental and genetic factors which certainly play a pivotal role but cannot be the sole causal factor leading to metabolic syndrome. Epigenetics – a mediator between genetics and environment – is emerging as a potential candidate to explain the increase in the prevalence of such metabolic diseases. Changes in the epigenetic landscape marked by DNA methylation, histone methylation, and acetylation can lead to obesity, insulin resistance, diabetes, and vascular dysfunction in both animals and humans. Nutritional programming during early stages of life can manipulate the metabolism and the physiology of the organism. This is where the importance of optimal maternal nutrition comes into play. Both maternal under- and overnutrition have the potential to adversely affect the etiology of metabolic disorders in the developing fetus by changing the epigenetic marks. Various macronutrients and micronutrients in the maternal diet have also been shown to be exhibiting specific effect on the future health of the offspring. Though the role of epigenetics in fetal programming of metabolic syndrome is constantly being well understood, research on the therapeutic aspect is still in its infancy. Interventions and manipulation of dietary supplementation which potentially can make changes in the epigenetic marks can be the future therapeutic targets for chronic metabolic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

11β-HSD1:

11β-hydroxysteroid dehydrogenase type 1

Agtr1b:

Angiotensin II receptor, type 1b

AMPK:

5′ AMP-activated protein kinase

CEBPB:

CCAAT/enhancer-binding protein beta

G6Pase:

Glucose 6-phosphatase

GHSR:

Growth hormone secretagogue receptor

GLUT4:

Glucose transporter type 4

GR:

Glucocorticoid receptor

HAT:

Histone acetyltransferase

HDAC:

Histone deacetylase

IGF2R:

Insulin-like growth factor 2 receptor

IGFBP3:

Insulin-like growth factor-binding protein-3

IQ:

Intelligence quotient

IUGR:

Intrauterine growth restriction

LINE-1:

Long interspersed nuclear element-1

LXRα:

Liver X receptor alpha

NAD:

Nicotinamide adenine dinucleotide

NOS3:

Nitric oxide synthase

Pdx1:

Pancreatic and duodenal homeobox 1

PEPCK:

Phosphoenolpyruvate carboxykinase

PGC-1α:

PPAR gamma coactivator -1 alpha

PPARα:

Peroxisome proliferator-activated receptor alpha

ROS:

Reactive oxygen species

SIRT1:

Sirtuin 1

TCA:

Tricarboxylic acid

ZFP423:

Zinc finger protein 423

ZFP57:

Zinc finger protein 57

RXRA:

Retinoid X receptor alpha

References

  • Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 7:881–888

    Article  CAS  Google Scholar 

  • Azzi S, Sas TC, Koudou Y, Le Bouc Y, Souberbielle JC, Dargent-Molina P, Netchine I, Charles MA (2014) Degree of methylation of ZAC1 (PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort. Epigenetics 9(3):338–345

    Article  CAS  PubMed  Google Scholar 

  • Barker DJ (1990) The fetal and infant origins of adult disease. BMJ 301(6761):1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker DJP (1998) In utero programming of chronic disease. Clin Sci 95:115–128

    Article  CAS  Google Scholar 

  • Barrès R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K, Krook A, Zierath JR (2009) Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 10(3):189–198

    Article  CAS  PubMed  Google Scholar 

  • Barros SP, Offenbacher S (2009) Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 88:400–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazer FW, Wu G, Johnson GA, Kim JY, Song GW (2011) Uterine histotroph and conceptus development: select nutrients and secreted phosphoprotein 1 affect MTOR cell signaling in ewes. Biol Reprod 85(6):1094–1107

    Article  CAS  PubMed  Google Scholar 

  • Bellinger L, Lilley C, Langley-Evans SC (2004) Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat. Br J Nutr 92(3):513–520

    Article  CAS  PubMed  Google Scholar 

  • Bergel E, Belizan JM (2002) A deficient maternal calcium intake during pregnancy increases blood pressure of the offspring in adult rats. BJOG 109(5):540–545

    Article  CAS  PubMed  Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ (2007) Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res 100(4):520–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolesta M, Szostak-Wegierek D (2009) Zywienie kobiety podczas ciazy. Czesc II. Witaminy i skladniki mineralne [Nutrition during pregnancy. Part II. Vitamins and minerals]. Zyw Czlow Metab 36(4):656–664

    CAS  Google Scholar 

  • Borengasser SJ, Kang P, Faske J, Gomez-Acevedo H, Blackburn ML, Badger TM, Shankar K (2014) High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring. PLoS One 9(1):e84209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butte NF (2000) Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr 71:1256S–12661S

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Simar D, Lambert K, Mercier J, Morris MJ (2008) Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 149(11):5348–5356

    Article  CAS  PubMed  Google Scholar 

  • Connor WE (2000) Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 71(1 Suppl):171S–175S

    Article  CAS  PubMed  Google Scholar 

  • Cropley JE, Suter CM, Beckman KB, Martin DI (2006) Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci 103:17308–17312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curley JP, Mashoodh R, Champagne FA (2011) Epigenetics and the origins of paternal effects. Horm Behav 59(3):306–314

    Article  PubMed  Google Scholar 

  • Darnton-Hill I, Uzonna CM (2015) Micronutrients in pregnancy in low- and middle-income countries. Forum Nutr 7(3):1744–1768

    CAS  Google Scholar 

  • Dedkova EN, Blatter LA (2014) Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Front Physiol 17(5):260

    Google Scholar 

  • Delcuve GP, Rastegar M, Davie JR (2009) Epigenetic control. J Cell Physiol 219:243–250

    Article  CAS  PubMed  Google Scholar 

  • Dunn GA, Bale TL (2009) Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150:4999–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duque-Guimara es DE, Ozanne SE (2013) Nutritional programming of insulin resistance: causes and consequences. Trends Endocrinol Metab 24(10):525–535

    Article  CAS  Google Scholar 

  • FAO/WHO (2002) Human vitamin and mineral requirements. Report of a Joint FAO/WHO Expert Consultation. FAO, Rome

    Google Scholar 

  • Frei B, England L, Ames BN (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci U S A 86(16):6377–6381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluckman P et al (2008) Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359:61–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, Rodford J, Slater-Jefferies JL, Garratt E, Crozier SR, Emerald BS, Gale CR, Inskip HM, Cooper C, Hanson MA (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60(5):1528–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison M, Langley-Evans SC (2009) Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br J Nutr 101:1020–1030

    Article  CAS  PubMed  Google Scholar 

  • Hiller JE, Crowther CA, Moore VA, Willson K, Robinson JS (2007) Calcium supplementation in pregnancy and its impact on blood pressure in children and women: follow up of a randomised controlled trial. Aust N Z J Obstet Gynaecol 47(2):115–121

    Article  PubMed  Google Scholar 

  • Hillier TA, Pedula KL, Schmidt MM, Mullen JA, Charles MA, Pettitt DJ (2007) Childhood obesity and metabolic imprinting. Diabetes Care 30(9):2287–2292

    Article  PubMed  Google Scholar 

  • Ingelfinger JR (2004) Pathogenesis of perinatal programming. Curr Opin Nephrol Hypertens 13(4):459–464

    Article  CAS  PubMed  Google Scholar 

  • Innis SM, Friesen RW (2008) Essential n-3 fatty acids in pregnant women and early visual acuity maturation in term infants. Am J Clin Nutr 87(3):548–557

    Article  CAS  PubMed  Google Scholar 

  • Jahan-mihan A, Luhovyy BL, Khoury DEI, Anderson GH (2011) Dietary proteins as determinants of metabolic and physiologic functions of the gastrointestinal tract. Forum Nutr 3:574–603

    CAS  Google Scholar 

  • Ji Y, Wu Z, Dai Z, Sun K, Wang J, Wu G (2016) Nutritional epigenetics with a focus on amino acids: implications for the development and treatment of metabolic syndrome. J Nutr Biochem 27:1–8

    Article  CAS  PubMed  Google Scholar 

  • Jou MY, Phillips AF, Lonnerdal B (2010) Maternal zinc deficiency in rats affects growth and glucose metabolism in the offspring by inducing insulin resistance postnatally. J Nutr 140(9):1621–1627

    Article  CAS  PubMed  Google Scholar 

  • Keating ST, El-Osta A (2015) Epigenetics and metabolism. Circ Res 116:715–736

    Article  CAS  PubMed  Google Scholar 

  • King JC (2003) The risk of maternal nutritional depletion and poor outcomes increases in early or closely spaced pregnancies. J Nutr 133(5 Suppl 2):1732S–1736S

    Article  CAS  PubMed  Google Scholar 

  • Kong J, Li YC (2006) Molecular mechanism of 1,25-dihydroxyvitamin D-3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab 290:E916–E924

    Article  CAS  PubMed  Google Scholar 

  • Kunes J, Vaněčková I, Mikulášková B, Behuliak M, Maletínská I, Zicha J (2015) Epigenetics and a new look on metabolic syndrome. Physiol Res 64:611–620

    CAS  PubMed  Google Scholar 

  • Lan X, Cretney EC, Kropp J, Khateeb K, Berg MA, Peñagaricano F, Magness R, Radunz AE, Khatib H (2013) Maternal diet during pregnancy induces gene expression and dna methylation changes in fetal tissues in sheep. Front Genet 4:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Langley-Evans SC, Phillips GJ, Jackson AA (1994) In utero exposure to maternal low protein diets induces hypertension in weanling rats, independently of maternal blood pressure changes. Clin Nutr 13:319–324

    Article  CAS  PubMed  Google Scholar 

  • Lapillonne A (2010) Vitamin D deficiency during pregnancy may impair maternal and fetal outcomes. Med Hypotheses 74(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Lelievre-Pegorier M, Vilar J, Ferrier ML et al (1998) Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int 54(5):1455–1462

    Article  CAS  PubMed  Google Scholar 

  • Lenders CM, Hediger ML, Scholl TO, Khoo CS, Slap GB, Stallings VA (1997) Gestational age and infant size at birth are associated with dietary sugar intake among pregnant adolescents. J Nutr 127(6):1113–1117

    Article  CAS  PubMed  Google Scholar 

  • Levin BE (2006) Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Philos Trans R Soc B 361(1471):1107–1121

    Article  CAS  Google Scholar 

  • Liang C, Oest ME, Prater MR (2009) Intrauterine exposure to high saturated fat diet elevates risk of adult-onset chronic diseases in C57BL/6 mice. Birth Defects Res B Dev Reprod Toxicol 86(5):377–384

    Article  CAS  PubMed  Google Scholar 

  • Liang C, DeCourcy K, Prater MR (2010) High-saturated-fat diet induces gestational diabetes and placental vasculopathy in C57BL/6 mice. Metabolism 59:943–950

    Article  CAS  PubMed  Google Scholar 

  • Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC (2005) Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135:1382–1386

    Article  CAS  PubMed  Google Scholar 

  • Lindpaintner K (1993) Blood pressure and heredity. Is it all in the genes, or not?. Hypertension 22(2):147–149

    Google Scholar 

  • Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ (2003) Effect of iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 90(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Lovegrove JA, Gitau R (2008) Nutrigenetics and CVD: what does the future hold? Proc Nutr Soc 67:206–213

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metabolism Cell Metab 16(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Mahon P, Harvey N, Crozier S, Inskip H, Robinson S, Arden N et al (2010) Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res 25:14–19

    Article  CAS  PubMed  Google Scholar 

  • Maloney CA, Gosby AK, Phuyal JL, Denyer GS, Bryson JM, Caterson ID (2003) Site-specific changes in the expression of fat-partitioning genes in weanling rats exposed to a low-protein diet in utero. Obes Res 11(3):461–468

    Article  CAS  PubMed  Google Scholar 

  • Martini LA, Wood RJ (2006) Vitamin D status and the metabolic syndrome. Nutr Rev 64:479–486

    Article  PubMed  Google Scholar 

  • Masuyama H, Hiramatsu Y (2012) Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 153:2823–2830

    Article  CAS  PubMed  Google Scholar 

  • Mathews F, Yudkin P, Neil A (1999) Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. BMJ 319(7206):339–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mato J, Alvarez L, Ortis P, Pajares M (1997) S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Phannacol Ther 73(3):265–280

    CAS  Google Scholar 

  • Matthews KA, Rhoten WB, Driscoll HK, Chertow BS (2004) Vitamin A deficiency impairs fetal islet development and causes subsequent glucose intolerance in adult rats. J Nutr 134(8):1958–1963

    Article  CAS  PubMed  Google Scholar 

  • McCay PB (1985) Vitamin E: interactions with free radicals and ascorbate. Annu Rev Nutr 5:323–340

    Article  CAS  PubMed  Google Scholar 

  • McKay JA, Groom A, Potter C, Coneyworth LJ, Ford D, Mathers JC, Relton CL (2012) Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: role for folate gene variants and vitamin B12. PLoS One 7(3):e33290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miese-Looy G, Rollings-Scattergood J, Yeung A (2008) Long-term health consequences of poor nutrition during pregnancy. Stud Undergrad Res Guelph 1:73–81

    Google Scholar 

  • Miller RK, Hendrickx AG, Mills JL, Hummler H, Wiegand UW (1998) Periconceptional vitamin A use: how much is teratogenic? Reprod Toxicol 12(1):75–88

    Article  CAS  PubMed  Google Scholar 

  • Molloy AM, Kirke PN, Brody LC, Scott JM, Mills JL (2008) Effects of folate and vitamin B12 deficiencies during pregnancy on fetal, infant, and child development. Food Nutr Bull 29(2 Suppl):S101–S111

    Article  PubMed  Google Scholar 

  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318

    Article  CAS  PubMed  Google Scholar 

  • Neggers YH, Goldenberg RL, Tamura T, Cliver SP, Hoffman HJ (1997) The relationship between maternal dietary intake and infant birthweight. Acta Obstet Gynecol Scand Suppl 165:71–75

    CAS  PubMed  Google Scholar 

  • Packer JE, Slater TF, Willson RL (1979) Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278(5706):737–738

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Stoffers DA, Nicholls RD, Simmons RA (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest 118(6):2316–2324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasco JA, Wark JD, Carlin JB, Ponsonby AL, Vuillermin PJ, Morley R (2008) Maternal vitamin D in pregnancy may influence not only offspring bone mass but other aspects of musculoskeletal health and adiposity. Med Hypotheses 71:266–269

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Choksi A, Chattopadhyay S (2015) Understanding interindividual epigenetic variations in obesity and its management. In: Tollefsbol T (ed) Personalized epigenetics, 1st edn. Elsevier, Boston, pp 429–460

    Chapter  Google Scholar 

  • Petrik J, Reusens B, Arany E, Remacle C, Coelho C, Hoet JJ, Hill DJ (1999) A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor-II. Endocrinology 140(10):4861–4873

    Article  CAS  PubMed  Google Scholar 

  • Portha B, Fournier A, Kioon MD, Mezger V, Movassat J (2014) Early environmental factors, alteration of epigenetic marks and metabolic disease susceptibility. Biochimie 97:1–15

    Article  CAS  PubMed  Google Scholar 

  • Raychaudhuri N, Raychaudhuri S, Thamotharan M, Devaskar SU (2008) Histone code modifications repress glucose transporter 4 expression in the intrauterine growth-restricted offspring. J Biol Chem 283(20):13611–13626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees WD, Hay SM, Brown DS, Antipatis C, Palmer RM (2000) Maternal protein deficiency causes hypermethylation of DNA in the livers of rat fetuses. J Nutr 130:1821–1826

    Article  CAS  PubMed  Google Scholar 

  • Reik W, Dean W (2001) DNA methylation and mammalian epigenetics. Electrophoresis 22(14):2838–2843

    Article  CAS  PubMed  Google Scholar 

  • Reynolds LP, Caton JS (2012) Role of the pre- and post-natal environment in developmental programming of health and productivity. Mol Cell Endocrinol 354(1–2):54–59

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Nakagawa I, Kajimoto M (1982) Effect of protein nutrition throughout gestation and lactation on growth, morbidity and life span of rat progeny. J Nutr Sci Vitaminol 28:543–555

    Article  CAS  PubMed  Google Scholar 

  • Scholl TO, Chen X, Sims M, Stein TP (2006) Vitamin E: maternal concentrations are associated with fetal growth. Am J Clin Nutr 84(6):1442–1448

    Article  CAS  PubMed  Google Scholar 

  • Sedová L, Seda O, Kazdová L, Chylíková B, Hamet P, Tremblay J, Kren V, Krenová D (2007) Sucrose feeding during pregnancy and lactation elicits distinct metabolic response in offspring of an inbred genetic model of metabolic syndrome. Am J Physiol Endocrinol Metab 292(5):E1318–E1324

    Article  CAS  PubMed  Google Scholar 

  • Sinclair KD, Allegrucci C, Singh R, Gardner DS, Sebastian S, Bispham J, Thurston A, Huntley JF, Rees WD, Maloney CA, Lea RG, Craigon J, McEvoy TG, Young LE (2007) DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci 104(49):19351–19356

    Article  PubMed  PubMed Central  Google Scholar 

  • Skinner MK, Manikkam M, Guerrero-Bosagna C (2010) Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab 21:214–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sporty J, Lin SJ, Kato M, Ognibene T, Stewart B, Turteltaub K, Bench G (2009) Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae. Yeast 26(7):363–369

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Kennedy PJ, Nestler EJ (2013) Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 38(1):124–137

    Article  CAS  PubMed  Google Scholar 

  • Templeton A (2014) Obesity and women’s health. Facts Views Vis Obgyn 6(4):175–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thakor AS, Herrera EA, Seron-Ferre M, Giussani DA (2010) Melatonin and vitamin c increase umbilical blood flow via nitric oxide-dependent mechanisms. J Pineal Res 49(4):399–406

    Article  CAS  PubMed  Google Scholar 

  • Tomat AL, Inserra F, Veiras L et al (2008) Moderate zinc restriction during fetal and postnatal growth of rats: effects on adult arterial blood pressure and kidney. Am J Phys Regul Integr Comp Phys 295(2):R543–R549

    CAS  Google Scholar 

  • Torrens C, Poston L (2008) Hanson Ma: transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation. Br J Nutr 100:760–766

    Article  CAS  PubMed  Google Scholar 

  • Turner BM (2000) Histone acetylation and an epigenetic code. BioEssays 22(9):836–845

    Article  CAS  PubMed  Google Scholar 

  • Venu L, Harishankar N, Krishna TP, Raghunath M (2004a) Does maternal dietary mineral restriction per se predispose the offspring to insulin resistance? Eur J Endocrinol 151:287–294

    Article  CAS  PubMed  Google Scholar 

  • Venu L, Harishankar N, Krishna TP, Raghunath M (2004b) Maternal dietary vitamin restriction increases body fat content but not insulin resistance in WNIN rat offspring up to 6 months of age. Diabetologia 47:1493–1501

    Article  CAS  PubMed  Google Scholar 

  • Venu L, Kishore YD, Raghunath M (2005) Maternal and perinatal magnesium restriction predisposes rat pups to insulin resistance and glucose intolerance. J Nutr 135(6):1353–1358

    Article  CAS  PubMed  Google Scholar 

  • Vo TX, Revesz A, Sohi G, Ma N, Hardy DB (2013) Maternal protein restriction leads to enhanced hepatic gluconeogenic gene expression in adult male rat offspring due to impaired expression of the liver X receptor. J Endocrinol 218:85–97

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wu Z, Li D, Li N, Dindot SV, Satterfield MC, Bazer FW, Wu G (2012) Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 17(2):282–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Walker SO, Hong X, Bartell TR, Wang X (2013) Epigenetics and early life origins of chronic noncommunicable diseases. J Adolesc Health 52:S14–S21

    Article  PubMed  Google Scholar 

  • Weaver CM (2007) Vitamin D, calcium homeostasis, and skeleton accretion in children. J Bone Miner Res 22:V45–V49

    Article  CAS  PubMed  Google Scholar 

  • Whitaker RC (2004) Predicting preschooler obesity at birth: the role of maternal obesity in early pregnancy. Pediatrics 114:e29–e36

    Article  PubMed  Google Scholar 

  • Wu JN, Berecek KH (1993) Prevention of genetic hypertension by early treatment of spontaneously hypertensive rats with the angiotensin converting enzyme inhibitor captopril. Hypertension 22(2):139–146

    Google Scholar 

  • Wu G, Bazer FW, Datta S, Johnson GA, Li P, Satterfield MC, Spencer TE (2008) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35(4):691–702

    Article  CAS  PubMed  Google Scholar 

  • Yajnik CS, Deshmukh US (2008) Maternal nutrition, intrauterine programming and consequential risks in the offspring. Rev Endocr Metab Disord 9(3):203–211

    Article  CAS  PubMed  Google Scholar 

  • Yang QY, Liang JF, Rogers CJ, Zhao JX, Zhu MJ, Du M (2013) Maternal obesity induces epigenetic modifications to facilitate Zfp423 expression and enhance adipogenic differentiation in fetal mice. Diabetes 62:3727–3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youngson NA, Whitelaw E (2008) Transgenerational epigenetic effects. Annu Rev Genomics Hum Genet 9:233–257

    Article  CAS  PubMed  Google Scholar 

  • Zheng S, Rollet M, Pan YX (2011) Maternal protein restriction during pregnancy induces CCAAT/enhancer-binding protein (C/EBPβ) expression through the regulation of histone modification at its promoter region in female offspring rat skeletal muscle. Epigenetics 6(2):161–170

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samit Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Patel, S., Choksi, A., Pant, R., Alam, A., Chattopadhyay, S. (2019). Nutritional Programming of Metabolic Syndrome: Role of Nutrients in Shaping the Epigenetics. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics