Skip to main content

Epigenetics of Undernutrition

  • Reference work entry
  • First Online:

Abstract

The term undernutrition commonly refers to underfeeding and poor nutritional status. This condition is primarily caused by an inadequate intake of dietary energy or some specific nutrients, which accompany starvation or famine, voluntary reduction of food intake, gastrointestinal disorders, parasitic infestations, and severe pathologies that result in enhanced tissue catabolism. Of special importance is undernutrition during gestation (unbalanced maternal diet or intrauterine growth retardation) and lactation, as it compromises in- utero development and impairs infant growth and neurocognitive functions. Moreover, undernutrition is related to immunodeficiency, accelerated aging, and has potential deleterious consequences for adult health, including neurological disorders, cardiovascular diseases, obesity, diabetes, and cancer. Cumulative evidence has demonstrated that diverse environmental factors, including undernutrition, can modify epigenetic marks (particularly DNA methylation, covalent histone modifications, and noncoding RNAs) throughout life, affecting gene expression and cell function, with long-term effects on health in adult life. Of particular interest is the impact of undernutrition on the epigenome driven by the lack of dietary methyl donors (choline, betaine, folate, and vitamins B2, B6, and B12) and other micronutrients, low-protein diets, calorie restriction, and famine exposure. This knowledge is contributing to a better understanding of the role of dietary deficiencies in the development of several adverse conditions through epigenetic mechanisms. Moreover, these scientific insights are leading to design novel dietary interventions targeting the epigenome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AAR:

Amino acid response

ABCA1:

ATP-binding cassette subfamily A member 1

AN:

Anorexia nervosa

ANGPT2:

Angiopoietin 2

ASNS:

Asparagine synthetase

ATF3:

Activating transcription factor 3

ATF4:

Activating transcription factor 4

BDNF:

Brain-derived neurotrophic factor

BOLA:

Transcriptional factor BOLA

C/EBP-β:

CCAAT/enhancer-binding protein beta

CDH23:

Cadherin-related 23

CDKN3:

Cyclin-dependent kinase inhibitor 3

COMT:

Catechol-O-methyltransferase

CYP7A1:

Hepatic cholesterol 7α-hydroxylase

DOHaD:

Developmental Origins of Health and Disease

EXD3:

Exonuclease 3′-5′ domain containing 3

FASN:

Fatty acid synthase

G6PC:

Glucose-6-phosphatase catalytic subunit

GATA-4:

GATA-binding protein 4

GLUT4 :

Glucose transporter 4

GNAS:

GNAS complex locus

GRIA1:

Glutamate ionotropic receptor AMPA-type subunit 1

HSD11B1:

Hydroxysteroid 11-beta dehydrogenase 1

HSD11B2:

Hydroxysteroid 11-beta dehydrogenase 2

HTR2A :

5-hydroxytryptamine receptor 2A

ICAM1:

Intercellular adhesion molecule 1

IFNG:

Interferon gamma

IGF1:

Insulin-like growth factor 1

IGF2:

Insulin-like growth factor 2

IL-10:

Interleukin-10

IL-6:

Interleukin-6

INSIGF2:

INS-IGF2 read-through

INSR:

Insulin receptor

IQ:

Intellectual coefficient

IUGR:

Intrauterine growth retardation

KLF13:

Kruppel-like factor 13

LDLR:

Low-density lipoprotein receptor

LEP:

Leptin

LINE-1:

Long interspersed nuclear elements

LncRNA:

Long- noncoding RNAs

LXRα:

Liver X receptor alpha

MAPK:

Mitogen-activated protein kinase

MCR:

Moderate calorie restriction

ME:

Metastable epialleles

MEG3:

Maternally expressed 3 (nonprotein coding)

MIR200B:

microRNA 200b

MiRNA:

microRNA

NETO1 :

Neuropilin and tolloid-like 1

NR1H3:

Nuclear receptor subfamily 1 group H member 3 gene

NTD:

Neural tube defects

PAK3:

p21 (RAC1)-activated kinase 3

PAX8:

Paired box 8

PCK1:

Phosphoenolpyruvate carboxykinase 1

P-DMRs:

Prenatal malnutrition-associated differentially methylated regions

PGC-1α:

PPAR-γ coactivator-1α

PPAR-γ:

Peroxisome proliferator-activated receptor gamma

PRSS12:

Protease, serine 12

PUFA:

Long-chain polyunsaturated fatty acids

RFTN1:

Raftlin, lipid raft linker 1

SAM:

S-adenosylmethionine

SCR:

Severe caloric restriction

siRNA:

Small interfering RNA

SMAD7:

SMAD family member 7

SREBF1:

Sterol regulatory element-binding transcription factor 1

STAT3:

Signal transducer and activator of transcription 3

SYNGAP1:

Synaptic Ras GTPase-activating protein 1

TFAP2A:

Transcription factor AP-2 alpha

TLR2:

Toll-like receptor 2

TNXB:

Hypermethylated tenascin XB gene

VEGFC:

Vascular endothelial growth factor C

VHL:

von Hippel-Lindau

VIPR2:

Vasoactive intestinal peptide receptor 2

VTRNA2-1:

Vault RNA 2-1

ZFP57:

ZFP57 zinc finger protein

References

  • Adaikalakoteswari A, Finer S, Voyias PD et al (2015) Vitamin B12 insufficiency induces cholesterol biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR genes. Clin Epigenetics 7:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agodi A, Barchitta M, Quattrocchi A et al (2015) Low fruit consumption and folate deficiency are associated with LINE-1 hypomethylation in women of a cancer-free population. Genes Nutr 10:480

    Article  CAS  PubMed  Google Scholar 

  • Altobelli G, Bogdarina IG, Stupka E et al (2013) Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid. PLoS One 8:e82989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 23:853–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booij L, Casey KF, Antunes JM et al (2015) DNA methylation in individuals with anorexia nervosa and in matched normal-eater controls: a genome-wide study. Int J Eat Disord 48:874–882

    Article  PubMed  Google Scholar 

  • Camarena V, Wang G (2016) The epigenetic role of vitamin C in health and disease. Cell Mol Life Sci 73:1645–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Broséus J, Hergalant S et al (2015) Identification of master genes involved in liver key functions through transcriptomics and epigenomics of methyl donor deficiency in rat: relevance to nonalcoholic liver disease. Mol Nutr Food Res 59:293–302

    Article  CAS  PubMed  Google Scholar 

  • Choi SW, Friso S, Ghandour H et al (2004) Vitamin B-12 deficiency induces anomalies of base substitution and methylation in the DNA of rat colonic epithelium. J Nutr 134:750–755

    Article  CAS  PubMed  Google Scholar 

  • Colman RJ, Beasley TM, Kemnitz JW et al (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 5:3557

    Article  CAS  PubMed  Google Scholar 

  • Cordero P, Gomez-Uriz AM, Campion J et al (2013) Dietary supplementation with methyl donors reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet. Genes Nutr 8:105–113

    Article  CAS  PubMed  Google Scholar 

  • Crider KS, Yang TP, Berry RJ et al (2012) Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role. Adv Nutr 3:21–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Salas P, Moore SE, Baker MS et al (2014) Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 5:3746

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Fu H, Dong H et al (2016) Maternal n-3 polyunsaturated fatty acid deprivation during pregnancy and lactation affects neurogenesis and apoptosis in adult offspring: associated with DNA methylation of brain-derived neurotrophic factor transcripts. Nutr Res 36:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Zhao LZ, Hong L et al (2013) Alteration in methylation pattern of GATA-4 promoter region in vitamin A-deficient offspring’s heart. J Nutr Biochem 24:1373–1380

    Article  CAS  PubMed  Google Scholar 

  • Finer S, Iqbal MS, Lowe R et al (2016) Is famine exposure during developmental life in rural Bangladesh associated with a metabolic and epigenetic signature in young adulthood? A historical cohort study. BMJ Open 6:e011768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer A, Gaedicke S, Frank J et al (2010) Dietary vitamin E deficiency does not affect global and specific DNA methylation patterns in rat liver. Br J Nutr 104:935–940

    Article  CAS  PubMed  Google Scholar 

  • Galler JR, Bryce CP, Zichlin ML et al (2012) Infant malnutrition is associated with persisting attention deficits in middle adulthood. J Nutr 142:788–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galler JR, Bryce CP, Zichlin ML et al (2013) Malnutrition in the first year of life and personality at age 40. J Child Psychol Psychiatry 54:911–919

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia MM, Guéant-Rodriguez RM, Pooya S et al (2011) Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1α by PRMT1 and SIRT1. J Pathol 225:324–335

    Article  CAS  PubMed  Google Scholar 

  • Geraghty AA, Lindsay KL, Alberdi G et al (2016) Nutrition during pregnancy impacts offspring’s epigenetic status-evidence from human and animal studies. Nutr Metab Insights 8:41–47

    PubMed  PubMed Central  Google Scholar 

  • Gonseth S, Roy R, Houseman EA et al (2015) Periconceptional folate consumption is associated with neonatal DNA methylation modifications in neural crest regulatory and cancer development genes. Epigenetics 10:1166–1176

    Article  PubMed  PubMed Central  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellwig S, Bass BL (2008) A starvation-induced noncoding RNA modulates expression of Dicer-regulated genes. Proc Natl Acad Sci USA 105:12897–12902

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoek HW, Susser E, Buck KA et al (1996) Schizoid personality disorder after prenatal exposure to famine. Am J Psychiatry 153:1637–1639

    Article  CAS  PubMed  Google Scholar 

  • Irwin RE, Pentieva K, Cassidy T et al (2016) The interplay between DNA methylation, folate and neurocognitive development. Epigenomics 8:863–879

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Wu Z, Dai Z et al (2016) Nutritional epigenetics with a focus on amino acids: implications for the development and treatment of metabolic syndrome. J Nutr Biochem 27:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kale A, Naphade N, Sapkale S et al (2010) Reduced folic acid, vitamin B12 and docosahexaenoic acid and increased homocysteine and cortisol in never-medicated schizophrenia patients: implications for altered one-carbon metabolism. Psychiatry Res 175:47–53

    Article  CAS  PubMed  Google Scholar 

  • Kalm LM, Semba RD (2005) They starved so that others be better fed: remembering Ancel Keys and the Minnesota experiment. J Nutr 135:1347–1352

    Article  CAS  PubMed  Google Scholar 

  • Kerek R, Geoffroy A, Bison A et al (2013) Early methyl donor deficiency may induce persistent brain defects by reducing Stat3 signaling targeted by miR-124. Cell Death Dis 4:e755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kesselmeier M, Pütter C, Volckmar AL et al (2016) High-throughput DNA methylation analysis in anorexia nervosa confirms TNXB hypermethylation. World J Biol Psychiatry 1:1–13

    Google Scholar 

  • Kilberg MS, Shan J, Su N (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20:436–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JK, Samaranayake M, Pradhan S (2009) Epigenetic mechanisms in mammals. Cell Mol Life Sci 66:596–612

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni A, Dangat K, Kale A et al (2011) Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats. PLoS One 6:e17706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Zempleni J (2014) Transcriptional regulation of the albumin gene depends on the removal of histone methylation marks by the FAD-dependent monoamine oxidase lysine-specific demethylase 1 in HepG2 human hepatocarcinoma cells. J Nutr 144:997–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longo VD, Antebi A, Bartke A et al (2015) Interventions to slow aging in humans: are we ready? Aging Cell 14:497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumey LH, Stein AD, Kahn HS et al (2007) Cohort profile: the Dutch Hunger Winter families study. Int J Epidemiol 36:1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Lumey LH, Stein AD, Kahn HS et al (2009) Lipid profiles in middle-aged men and women after famine exposure during gestation: the Dutch Hunger Winter families study. Am J Clin Nutr 89:1737–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew V, Ayyar SV (2012) Developmental origins of adult diseases. Indian J Endocrinol Metab 16:532–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Maxwell CS, Antoshechkin I, Kurhanewicz N et al (2012) Nutritional control of mRNA isoform expression during developmental arrest and recovery in C. elegans. Genome Res 22:1920–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehedint MG, Craciunescu CN, Zeisel SH (2010) Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. Proc Natl Acad Sci USA 107:12834–12839

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehler PS, Brown C (2015) Anorexia nervosa – medical complications. J Eat Disord 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Melo DS, Costa-Pereira LV, Santos CS et al (2016) Severe calorie restriction reduces cardiometabolic risk factors and protects rat hearts from ischemia/reperfusion injury. Front Physiol 7:106

    Article  PubMed  PubMed Central  Google Scholar 

  • Mennitti LV, Oliveira JL, Morais CA et al (2015) Type of fatty acids in maternal diets during pregnancy and/or lactation and metabolic consequences of the offspring. J Nutr Biochem 26:99–111

    Article  CAS  PubMed  Google Scholar 

  • Michaelsen KF, Larnkjær A, Mølgaard C (2012) Amount and quality of dietary proteins during the first two years of life in relation to NCD risk in adulthood. Nutr Metab Cardiovasc Dis 22:781–786

    Article  CAS  PubMed  Google Scholar 

  • Milagro FI, Mansego ML, De Miguel C et al (2013) Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Asp Med 34:782–812

    Article  CAS  Google Scholar 

  • Moore SE, Cole TJ, Collinson AC et al (1999) Prenatal or early postnatal events predict infectious deaths in young adulthood in rural Africa. Int J Epidemiol 28:1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Moreno CL, Mobbs CV (2016) Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet. Mol Cell Endocrinol 455:33–40

    Google Scholar 

  • Most J, Tosti V, Redman LM et al (2016) Calorie restriction in humans: an update. Ageing Res Rev 39:36–45

    Google Scholar 

  • Müller MJ, Enderle J, Pourhassan M et al (2015) Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr 102:807–819

    Article  CAS  PubMed  Google Scholar 

  • Neugebauer R, Hoek HW, Susser E (1999) Prenatal exposure to wartime famine and development of antisocial personality disorder in early adulthood. JAMA 282:455–462

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TT, Hayakawa T, Tsuge H (2001) Effect of vitamin B6 deficiency on the synthesis and accumulation of S-adenosylhomocysteine and S-adenosylmethionine in rat tissues. J Nutr Sci Vitaminol (Tokyo) 47:188–194

    Article  CAS  Google Scholar 

  • Niculescu MD, Craciunescu CN, Zeisel SH (2006) Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J 20:43–49

    Article  CAS  PubMed  Google Scholar 

  • Painter RC, de Rooij SR, Bossuyt PM et al (2006a) Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr 84:322–327

    Article  CAS  PubMed  Google Scholar 

  • Painter RC, de Rooij SR, Bossuyt PM et al (2006b) A possible link between prenatal exposure to famine and breast cancer: a preliminary study. Am J Hum Biol 18:853–856

    Article  CAS  PubMed  Google Scholar 

  • Painter RC, Osmond C, Gluckman P et al (2008) Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115:1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Pan S, Zheng Y, Zhao R et al (2013) MicroRNA-130b and microRNA-374b mediate the effect of maternal dietary protein on offspring lipid metabolism in Meishan pigs. Br J Nutr 109:1731–1738

    Article  CAS  PubMed  Google Scholar 

  • Peter CJ, Fischer LK, Kundakovic M et al (2016) DNA methylation signatures of early childhood malnutrition associated with impairments in attention and cognition. Biol Psychiatry 80:765–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogribny IP, Tryndyak VP, Bagnyukova TV et al (2009) Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. J Hepatol 51:176–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravelli AC, van der Meulen JH, Osmond C et al (1999) Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr 70:811–816

    Article  CAS  PubMed  Google Scholar 

  • Rechavi O, Houri-Ze’evi L, Anava S et al (2014) Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158:277–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochtus A, Jansen K, Van Geet C et al (2015) Nutri-epigenomic studies related to neural tube defects: does folate affect neural tube closure via changes in DNA methylation? Mini-Rev Med Chem 15:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Roseboom TJ, Van Der Meulen JH, Ravelli AC et al (2003) Perceived health of adults after prenatal exposure to the Dutch famine. Paediatr Perinat Epidemiol 17:391–397

    Article  PubMed  Google Scholar 

  • Sable P, Randhir K, Kale A et al (2015) Maternal micronutrients and brain global methylation patterns in the offspring. Nutr Neurosci 18:30–36

    Article  CAS  PubMed  Google Scholar 

  • Schachtschneider KM, Liu Y, Rund LA et al (2016) Impact of neonatal iron deficiency on hippocampal DNA methylation and gene transcription in a porcine biomedical model of cognitive development. BMC Genomics 17:856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver MJ, Kessler NJ, Hennig BJ et al (2015) Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome Biol 16:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siqueira FR, Furukawa LN, Oliveira IB et al (2016) Glucose metabolism and hepatic Igf1 DNA methylation are altered in the offspring of dams fed a low-salt diet during pregnancy. Physiol Behav 154:68–75

    Article  CAS  PubMed  Google Scholar 

  • Sohi G, Marchand K, Revesz A et al (2011) Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7alpha-hydroxylase promoter. Mol Endocrinol 25:785–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaya J, Iharada A, Okihana H et al (2011) Magnesium deficiency in pregnant rats alters methylation of specific cytosines in the hepatic hydroxysteroid dehydrogenase-2 promoter of the offspring. Epigenetics 6:573–578

    Article  CAS  PubMed  Google Scholar 

  • Takaya J, Iharada A, Okihana H et al (2013) A calcium-deficient diet in pregnant, nursing rats induces hypomethylation of specific cytosines in the 11β-hydroxysteroid dehydrogenase-1 promoter in pup liver. Nutr Res 33:961–970

    Article  CAS  PubMed  Google Scholar 

  • Tobi EW, Lumey LH, Talens RP et al (2009) DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet 18:4046–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobi EW, Goeman JJ, Monajemi R et al (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592

    Article  CAS  PubMed  Google Scholar 

  • Tomizawa H, Matsuzawa D, Ishii D et al (2015) Methyl-donor deficiency in adolescence affects memory and epigenetic status in the mouse hippocampus. Genes Brain Behav 14:301–309

    Article  CAS  PubMed  Google Scholar 

  • Tran PV, Kennedy BC, Lien YC et al (2015) Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus. Am J Phys Regul Integr Comp Phys 308:R276–R282

    CAS  Google Scholar 

  • Uthus E, Begaye A, Ross S et al (2011) The von Hippel-Lindau (VHL) tumor-suppressor gene is down-regulated by selenium deficiency in Caco-2 cells and rat colon mucosa. Biol Trace Elem Res 142:223–231

    Article  CAS  PubMed  Google Scholar 

  • van Straten EM, Bloks VW, Huijkman NC et al (2010) The liver X-receptor gene promoter is hypermethylated in a mouse model of prenatal protein restriction. Am J Phys Regul Integr Comp Phys 298:R275–R282

    Google Scholar 

  • Vo TX, Revesz A, Sohi G et al (2013) Maternal protein restriction leads to enhanced hepatic gluconeogenic gene expression in adult male rat offspring due to impaired expression of the liver X receptor. J Endocrinol 218:85–97

    Article  CAS  PubMed  Google Scholar 

  • Voisin S, Almén MS, Moschonis G et al (2015) Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents. Eur J Hum Genet 23:654–662

    Article  CAS  PubMed  Google Scholar 

  • Waber DP, Bryce CP, Girard JM et al (2014) Impaired IQ and academic skills in adults who experienced moderate to severe infantile malnutrition: a 40-year study. Nutr Neurosci 17:58–64

    Article  PubMed  Google Scholar 

  • Wang X, Guan Z, Chen Y et al (2015) Genomic DNA hypomethylation is associated with neural tube defects induced by methotrexate inhibition of folate metabolism. PLoS One 10:e0121869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasson GR, McGlynn AP, McNulty H et al (2006) Global DNA and p53 region-specific hypomethylation in human colonic cells is induced by folate depletion and reversed by folate supplementation. J Nutr 136:2748–2753. romatin

    Article  CAS  PubMed  Google Scholar 

  • Waterland RA, Kellermayer R, Laritsky E et al (2010) Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 6:e1001252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong CP, Rinaldi NA, Ho E (2015) Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Mol Nutr Food Res 59:991–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G (2016) Dietary protein intake and human health. Food Funct 7:1251–1265

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Fanzo J, Miller DD et al (2014) Production and supply of high-quality food protein for human consumption: sustainability, challenges, and innovations. Ann N Y Acad Sci 1321:1–19

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Zhu Y, Dong X et al (2014) TLR2-ICAM1-Gadd45α axis mediates the epigenetic effect of selenium on DNA methylation and gene expression in Keshan disease. Biol Trace Elem Res 159:69–80

    Article  CAS  PubMed  Google Scholar 

  • Zeisel SH (2012) Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones. Mutat Res 733:34–38

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Gu P, Liu K et al (2013) Maternal protein restriction in rats leads to reduced PGC-1α expression via altered DNA methylation in skeletal muscle. Mol Med Rep 7:306–312

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Chu X, Huang Y et al (2014) Maternal vitamin D deficiency during pregnancy results in insulin resistance in rat offspring, which is associated with inflammation and Iκbα methylation. Diabetologia 57:2165–2172

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Sun X, Xiao X et al (2016) Effects of maternal chromium restriction on the long-term programming in MAPK signaling pathway of lipid metabolism in mice. Forum Nutr 8:E488

    Google Scholar 

  • Zheng S, Rollet M, Pan YX (2012) Protein restriction during gestation alters histone modifications at the glucose transporter 4 (GLUT4) promoter region and induces GLUT4 expression in skeletal muscle of female rat offspring. J Nutr Biochem 23:1064–1071

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Pan YX (2011) Gestational low protein diet selectively induces the amino acid response pathway target genes in the liver of offspring rats through transcription factor binding and histone modifications. Biochim Biophys Acta 1809:549–556

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Bhagatwala J, Huang Y et al (2016) Race/ethnicity-specific association of vitamin D and global DNA methylation: cross-sectional and interventional findings. PLoS One 11:e0152849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fermin I. Milagro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ramos-Lopez, O., Riezu-Boj, J.I., Milagro, F.I., Martinez, J.A. (2019). Epigenetics of Undernutrition. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics