Skip to main content

DNA Demethylation and Epigenetics

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Epigenetic regulation is essential to gene expression programs necessary for normal embryonic development and maintaining cell functions throughout life. DNA methylation on cytosine nucleotides dictates those gene expression programs. However, the steady state levels and patterns of DNA methylation are maintained through the dynamic balance of DNA methylation and demethylation, and changing either side of the balance will certainly lead to the development of disease. In this chapter, we will briefly discuss recent advances on DNA demethylation and the implications in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5caC:

5-carboxylcytosine

5fC:

5-formylcytosine

5hmC:

5-hydroxymethylcytosine

5mC:

5-methylcytosine

AA:

Ascorbic Acid

AID:

Activation induced cytidine deaminase

AP site:

Apurinic/apyrimidinic site, or abasic site

Apobec:

Apolipoprotein B mRNA editing catalytic polypeptide-like

BER:

Base excision repair

CRISPR/CAS9:

Clustered regularly interspaced short palindromic repeats/CRISPR associated system 9

DNMT1:

DNA (cytosine-5)-methyltransferase 1

DNMT3A:

DNA (cytosine-5)-methyltransferase 3A

DNMT3B:

DNA (cytosine-5)-methyltransferase 3B

IDH:

Isocitrate dehydrogenase

MMR:

DNA mismatch repair

SHM:

Somatic hypermutation

TDG:

Thymine DNA glycosylase

TET:

Ten eleven translocation methylcytosine dioxygenases

UNG:

Uracil DNA glycosylase

Reference

  • Antequera F, Tamame M, Villanueva JR et al (1984) DNA methylation in the fungi. J Biol Chem 259:8033–8036

    CAS  PubMed  Google Scholar 

  • Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146:866–872

    Article  CAS  Google Scholar 

  • Blaschke K, Ebata KT, Karimi MM et al (2013) Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500:222–226

    Article  CAS  Google Scholar 

  • Cedar H, Bergman Y (2012) Programming of DNA methylation patterns. Annu Rev Biochem 81:97–117

    Article  CAS  Google Scholar 

  • Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27

    Article  CAS  Google Scholar 

  • Dawson MA, Kouzarides T, Huntly BJ (2012) Targeting epigenetic readers in cancer. N Engl J Med 367:647–657

    Article  CAS  Google Scholar 

  • Ehrlich M, Gama-Sosa MA, Huang LH et al (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10:2709–2721

    Article  CAS  Google Scholar 

  • Fritz EL, Papavasiliou FN (2010) Cytidine deaminases: AIDing DNA demethylation? Genes Dev 24:2107–2114

    Article  CAS  Google Scholar 

  • Gao Z, Liu HL, Daxinger L et al (2010) An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465:106–109

    Article  CAS  Google Scholar 

  • Geisen S, Barturen G, Alganza AM et al (2014) NGSmethDB: an updated genome resource for high quality, single-cytosine resolution methylomes. Nucleic Acids Res 42:D53–D59

    Article  CAS  Google Scholar 

  • Georgiou G, Ippolito GC, Beausang J et al (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158–168

    Article  CAS  Google Scholar 

  • Harris RS, Dudley JP (2015) APOBECs and virus restriction. Virology 479-480:131–145

    Article  CAS  Google Scholar 

  • Inoue A, Zhang Y (2011) Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334:194

    Article  CAS  Google Scholar 

  • Jeltsch A (2006) Molecular enzymology of mammalian DNA methyltransferases. Curr Top Microbiol Immunol 301:203–225

    CAS  PubMed  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  Google Scholar 

  • Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98

    Article  CAS  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  CAS  Google Scholar 

  • Li L, Connelly MC, Wetmore C et al (2003) Mouse embryos cloned from brain tumors. Cancer Res 63:2733–2736

    CAS  PubMed  Google Scholar 

  • Liu XS, Wu H, Ji X et al (2016) Editing DNA methylation in the mammalian genome. Cell 167:233–247 e17

    Article  CAS  Google Scholar 

  • Lorsbach RB, Moore J, Mathew S et al (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 17:637–641

    Article  CAS  Google Scholar 

  • Muramatsu M, Kinoshita K, Fagarasan S et al (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563

    Article  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  Google Scholar 

  • Palmer BR, Marinus MG (1994) The dam and dcm strains of Escherichia coli – a review. Gene 143:1–12

    Article  CAS  Google Scholar 

  • Patton KT, Thilbodeau GA (2018) The human body in health & disease, 7th ed. St. Louis, MO: Elsevier; p42.

    Google Scholar 

  • Rhee I, Bachman KE, Park BH et al (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416:552–556

    Article  CAS  Google Scholar 

  • Rodriguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339

    Article  CAS  Google Scholar 

  • Shenoy N, Bhagat T, Nieves E et al (2017) Upregulation of TET activity with ascorbic acid induces epigenetic modulation of lymphoma cells. Blood Cancer J 7:e587

    Article  CAS  Google Scholar 

  • Swanton C, Mcgranahan N, Starrett GJ et al (2015) APOBEC enzymes: mutagenic fuel for Cancer evolution and heterogeneity. Cancer Discov 5:704–712

    Article  CAS  Google Scholar 

  • Tahiliani M, Koh KP, Shen Y et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  Google Scholar 

  • Teng G, Papavasiliou FN (2007) Immunoglobulin somatic hypermutation. Annu Rev Genet 41:107–120

    Article  CAS  Google Scholar 

  • Tsumura A, Hayakawa T, Kumaki Y et al (2006) Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11:805–814

    Article  CAS  Google Scholar 

  • Vojta A, Dobrinic P, Tadic V et al (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res 44:5615–5628

    Article  CAS  Google Scholar 

  • Waddington CH (2012) The epigenotype. 1942. Int J Epidemiol 41:10–13

    Article  CAS  Google Scholar 

  • Wu X, Zhang Y (2017) TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet 18:517–534

    Article  CAS  Google Scholar 

  • Xu X, Tao Y, Gao X et al (2016) A CRISPR-based approach for targeted DNA demethylation. Cell Discov 2:16009

    Article  CAS  Google Scholar 

  • Zhang H, Zhu JK (2012) Seeing the forest for the trees: a wide perspective on RNA-directed DNA methylation. Genes Dev 26:1769–1773

    Article  CAS  Google Scholar 

  • Zhang X, Fu R, Yu J et al (2014) DNA demethylation: where genetics meets epigenetics. Curr Pharm Des 20:1625–1631

    Article  CAS  Google Scholar 

  • Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas E. Witzig or Xiaosheng Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, X., Witzig, T.E., Wu, X. (2019). DNA Demethylation and Epigenetics. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_120

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_120

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics