Skip to main content

Magnetic Resonance Angiography in the Diagnosis of Peripheral Arterial Disease

  • Chapter
  • First Online:
Noninvasive Vascular Diagnosis

Abstract

Magnetic resonance (MR) angiography is a standard method of noninvasive imaging utilized in peripheral arterial disease. As compared to percutaneous angiography, the gold standard for peripheral imaging, MR angiography offers good diagnostic accuracy with high sensitivity and specificity in identifying hemodynamically significant stenoses. Both contrast-enhanced and noncontrast-enhanced modalities of MR angiography are available. While the use of gadolinium-based contrast agents has been associated with nephrogenic systemic fibrosis, new contrast agents are being developed to avoid this complication. MR angiography compares well with other noninvasive imaging modalities, such as computed tomographic angiography, and affords better resolution and localization than duplex ultrasonography. Overall, sufficient information is provided by MR angiography for clinicians to base treatment decisions on the images acquired, and in some cases, MR angiography may even provide better imaging of target vessels than other modalities. Ongoing studies are being performed to enhance acquisition and post-processing of images, likely improving the data provided by MR angiography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Litt H, Carpenter J. Magnetic resonance imaging. In: Cronenwett J, Johnston KW, editors. Rutherford’s vascular surgery. Philadelphia: Elselvier; 2014. p. 351–76.

    Google Scholar 

  2. Owen R, Carpenter J, Baum R, Perloff L, Cope C. Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N Engl J Med. 1992;326:1577–81.

    Article  CAS  PubMed  Google Scholar 

  3. Koelemay M, Lijmer J, Stoker J, Legemate D, Bossuyt P. Magnetic resonance angiography for the evaluation of lower extremity arterial disease: a meta-analysis. JAMA. 2001;285:1338–45.

    Article  CAS  PubMed  Google Scholar 

  4. Meaney J. Magnetic resonance angiography of the peripheral arteries: current status. Eur Radiol. 2003;13:836–52.

    PubMed  Google Scholar 

  5. Vahl A, Geselschap J, Montauban van Swijndregt A, Smit J, Sala J, Turkcan K, et al. Contrast enhanced magnetic resonance angiography versus intra-arterial digital subtraction angiography for treatment planning in patients with peripheral arterial disease: a randomized controlled diagnostic trial. Eur J Vasc Endovasc Surg. 2008;35:514–21.

    Article  CAS  PubMed  Google Scholar 

  6. Norgren L, Hiatt W, Dormandy J, Nehler M, Harris K, Fowkes F, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg. 2007;45:S6A–S67A.

    Article  Google Scholar 

  7. Zhu Y, Zhao J, Wang J, Tan H, Lu H, Liu F, et al. Patency of runoff detected by MR angiography at 3.0 T with cuff-compression: a predictor of successful endovascular recanalization below the knee. Eur Radiol. 2014;24:2857–65.

    Article  PubMed  Google Scholar 

  8. Collins R, Burch J, Cranny G, Aguiar-Ibáñez R, Craig D, Wright K, et al. Duplex ultrasonography, magnetic resonance angiography, and computed tomography angiography for diagnosis and assessment of symptomatic, lower limb peripheral arterial disease: systematic review. BMJ. 2007;334:1257–65.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Leiner T, Tordoir J, Kessels A, Nelemans P, Schurink G, Kitslaar P, et al. Comparison of treatment plans for peripheral arterial disease made with multi-station contrast medium-enhanced magnetic resonance angiography and duplex ultrasound scanning. J Vasc Surg. 2003;37:1255–62.

    Article  PubMed  Google Scholar 

  10. Aibinu A, Salami M, Shafie A, Najeeb A. MRI reconstruction using discrete Fourier transform: a tutorial. Inter J Comp Elec Auto Cont Info Eng. 2008;2:1852–8.

    Google Scholar 

  11. Diehm N, Kickuth R, Baumgartner I, Srivastav S, Gretener S, Husmann M, et al. Magnetic resonance angiography in infrapopliteal arterial disease: prospective comparison of 1.3 and 3 tesla magnetic resonance imaging. Investig Radiol. 2007;42:467–76.

    Article  Google Scholar 

  12. Sharafuddin M, Stolpen A, Sun S, Leusner C, Safvi A, Hoballah J, et al. High-resolution multiphase contrast-enhanced three-dimensional MR angiography compared with two-dimensional time-of-flight MR angiography for the identification of pedal vessels. J Vasc Interv Radiol. 2002;13:695–702.

    Article  PubMed  Google Scholar 

  13. Bremerich J, Bilecon D, Reimer P. MR angiography with blood pool contrast agents. Eur Radiol. 2007;17:3017–24.

    Article  PubMed  Google Scholar 

  14. Ouwendijk R, de Vries M, Stinjen T, Pattynama P, van Sambeek M, Buth J, et al. Multicenter randomized controlled trial of the costs and effects of non-invasive diagnostic imaging in patients with peripheral arterial disease: the DIPAD trial. Am J Roentgenol. 2008;190:1349–57.

    Article  Google Scholar 

  15. Waugh J, Sacharias N. Arteriographic complications in the DSA era. Radiology. 1992;182:243–6.

    Article  CAS  PubMed  Google Scholar 

  16. Bezooijen R, van den Bosch H, Tielbeek A, Thelissen G, Visser K, Hunick M, et al. Peripheral arterial disease: sensitivity-encoded multiposition MR angiography compared with intraarterial angiography and conventional multiposition MR angiography. Radiology. 2004;232:635–52.

    Article  Google Scholar 

  17. Loewe C, Schoder M, Rand T, Hoffmann U, Sailer J, Kos T, et al. Peripheral vascular occlusive disease: evaluation with contrast-enhanced moving-bed MR angiography versus digital subtraction angiography in 106 patients. Am J Roentgenol. 2002;179:1013–21.

    Article  Google Scholar 

  18. Huegli R, Aschwanden M, Bongartz G, Jaeger K, Heidecker H, Thalhammer C, et al. Intraarterial MR angiography and DSA in patients with peripheral arterial occlusive disease: prospective comparison. Radiology. 2006;239:901–8.

    Article  PubMed  Google Scholar 

  19. Meissner O, Reiger J, Weber C, Siebert U, Steckmeier B, Reiser M, et al. Critical limb ischemia: hybrid MR angiography compared with DSA. Radiology. 2005;235:308–18.

    Article  PubMed  Google Scholar 

  20. Mell M, Tefera G, Thornton F, Siepman D, Turnipseed W. Clinical utility of time-resolved imaging of contrast kinetics (TRICKS) magnetic resonance angiography for infrageniculate arterial occlusive disease. J Vasc Surg. 2007;45:543–8.

    Article  PubMed  Google Scholar 

  21. de Vos M, Hawkins A, Hevelone N, Hamming J, Nguyen L. National variation in the utilization of alternative imaging in peripheral arterial disease. J Vasc Surg. 2014;59:1315–22.

    Article  PubMed  Google Scholar 

  22. Ouwendijk R, Kock M, Visser K, Pattynama P, de Haan M, Hunink M. Interobserver agreement for interpretation of contrast-enhanced three-dimensional MR angiography and multi-detector row CT angiography in peripheral arterial disease. Am J Roentgenol. 2005;185:1261–7.

    Article  Google Scholar 

  23. Ouwendijk R, de Vries M, Pattynama P, van Sambeek M, de Haan M, Stijnen T, et al. Contrast-enhanced three-dimensional MR angiography versus multi-detector row CT angiography in patients with peripheral arterial disease: a randomized controlled trial. Radiology. 2005;236:1094–103.

    Article  PubMed  Google Scholar 

  24. Ouwendijk R, Kock M, van Dijk L, van Sambeek M, Stijnen T, Hunink M. Vessel wall calcifications on multi-detector row CT angiography in patients with peripheral arterial disease: impact on clinical utility and clinical predictors. Radiology. 2006;241:603–8.

    Article  PubMed  Google Scholar 

  25. Jens S, Koelemay M, Reekers J, Bipat S. Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: systematic review and meta-analysis. Eur Radiol. 2013;23:3104–14.

    Article  PubMed  Google Scholar 

  26. Brenner D, Hall E. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357:2277–84.

    Article  CAS  PubMed  Google Scholar 

  27. Iglesias J, Peña C. Computed tomography angiography and magnetic resonance angiography imaging in critical limb ischemia: an overview. Tech Vasc Interv Radiol. 2014;17:147–54.

    Article  PubMed  Google Scholar 

  28. Visser K, Hunink M. Peripheral arterial disease: gadolinium-enhanced MR angiography versus color-guided duplex US—a meta-analysis. Radiology. 2000;216:66–77.

    Article  Google Scholar 

  29. Thomsen H, Morcos S, Almén T, Bellin M, Berolotto M, Bongartz G, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR contrast medium safety committee guidelines. Eur Radiol. 2013;23:307–18.

    Article  PubMed  Google Scholar 

  30. Bongartz G, Mayr M, Bilecen D. Magnetic resonance angiography (MRA) in renally impaired patients: when and how. Eur J Radiol. 2008;66:213–9.

    Article  PubMed  Google Scholar 

  31. Walker J, Nosova E, Sigovan M, Rapp J, Grenon M, Owens C, et al. Ferumoxytol-enhanced magnetic resonance angiography is a feasible method for the clinical evaluation of lower extremity arterial disease. Ann Vasc Surg. 2015;29:63–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia A. Awad MD .

Editor information

Editors and Affiliations

Review Questions

Review Questions

  1. 1.

    When did MR angiography become widely available?

    1. a.

      1980s

    2. b.

      1990s

    3. c.

      2000s

    4. d.

      2010s

  2. 2.

    To which gold-standard modality is MR angiography compared?

    1. a.

      Digital subtraction angiography

    2. b.

      Computed tomographic angiography

    3. c.

      Duplex ultrasonography

    4. d.

      Intravascular ultrasound

  3. 3.

    Which of the following is not utilized by MR angiography?

    1. a.

      Ionizing radiation

    2. b.

      Gadolinium-based contrast

    3. c.

      Magnetic field gradient

    4. d.

      Coils

  4. 4.

    Which of the following has been associated with the development of nephrogenic systemic fibrosis?

    1. a.

      Renal insufficiency

    2. b.

      Metabolic acidosis

    3. c.

      Repeated MR angiographic studies

    4. d.

      All of the above

Answer Key

  1. 1.

    b

  2. 2.

    a

  3. 3.

    a

  4. 4.

    d

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Awad, N.A., Carpenter, J.P. (2017). Magnetic Resonance Angiography in the Diagnosis of Peripheral Arterial Disease. In: AbuRahma, A. (eds) Noninvasive Vascular Diagnosis. Springer, Cham. https://doi.org/10.1007/978-3-319-54760-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54760-2_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54758-9

  • Online ISBN: 978-3-319-54760-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics