Skip to main content

Methanogenesis at High Latitudes

  • Living reference work entry
  • First Online:

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

Abstract

Methane (CH4) is the second greenhouse gas after carbon dioxide (CO2), and a quite portion of CH4 is released from permafrost and cold wetlands at high latitudes and altitudes. Global warming is causing permafrost thawing that results in release of the permafrost stored ancient carbon by microbial degradation at elevated temperatures. Methanogenesis is exclusively implemented by methanogenic Archaea although thus far only a few of the psychrophilic or psychrotolerant methanogen species have been cultured. In this chapter, we present methanogenesis pathways prevalent in the cold regions at both the earth poles and the high altitude Tibetan Plateau, as well as information on cold adapted methanogens that are responsible for the methane production. At the last, we show the distinct cold adaptive mechanisms found in methanogenic Archaea.

This is a preview of subscription content, log in via an institution.

References

  • Armstrong W, Justin SHFW, Beckett PM, Lythe S (1991) Root adaptation to soil waterlogging. Aquat Bot 39:57–73

    Article  Google Scholar 

  • Avis CA, Weaver AJ, Meissner KJ (2011) Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nat Geosci 4:444–448

    Article  CAS  Google Scholar 

  • Bae W, Xia B, Inouye M, Severinov K (2010) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci USA 97:7784–7789

    Article  CAS  Google Scholar 

  • Bhullar GS, Edwards PJ, Venterink HO (2013) Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms. J Plant Ecol 6:298–304

    Article  Google Scholar 

  • Bousquet P, Ringeval B, Pison I et al (2011) Source attribution of the changes in atmospheric methane for 2006–2008. Atmos Chem Phys 11:3689–3700

    Article  CAS  Google Scholar 

  • Cao Y, Li J, Jiang N, Dong XZ (2014) Mechanism for stabilizing mRNAs involved in methanol-dependent methanogenesis of cold-adaptive Methanosarcina mazei ZM-15. Appl Environ Microbiol 80:1291–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:331–343

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ, Yu HY, Li LY, Hu SN, Dong XZ (2012) The genome and transcriptome of a newly described psychrophilic archaeon, Methanolobus psychrophilus R15, reveal its cold adaptive characteristics. Environ Microbiol Rep 4:633–641

    PubMed  CAS  Google Scholar 

  • Chong SC, Liu YT, Cummins M, Valentine DL, Boone DR (2002) Methanogenium marinum sp nov., a H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. Anton Leeuw Int J G 81:263–270

    Article  CAS  Google Scholar 

  • Christensen TR, Prentice IC, Kaplan J, Haxeltine A, Sitch S (1996) Methane flux from northern wetlands and tundra – an ecosystem source modelling approach. Tellus B 48:652–661

    Article  Google Scholar 

  • Conrad R (1999) Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiol Ecol 28:193–202

    Article  CAS  Google Scholar 

  • Conrad R (2005) Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org Geochem 36:739–752

    Article  CAS  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292

    Article  CAS  PubMed  Google Scholar 

  • Corradi C, Kolle O, Walter K, Zimov SA, Schulze ED (2005) Carbon dioxide and methane exchange of a north-east Siberian tussock tundra. Glob Chang Biol 11:1910–1925

    Google Scholar 

  • Deppenmeier U (2002) Redox-driven proton translocation in methanogenic archaea. Cell Mol Life Sci 59:1513–1533

    Article  CAS  PubMed  Google Scholar 

  • Ding WX, Cai ZC, Wang DX (2004) Preliminary budget of methane emissions from natural wetlands in China. Atmos Environ 38:751–759

    Article  CAS  Google Scholar 

  • Evans PN, Parks DH, Chadwick GL et al (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438

    Article  CAS  PubMed  Google Scholar 

  • Evguenieva-Hackenberg E, Walter P, Hochleitner E, Lottspeich F, Klug G (2003) An exosome-like complex in Sulfolobus solfataricus. EMBO Rep 4:889–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenner N, Freeman C (2011) Drought-induced carbon loss in peatlands. Nat Geosci 4:895–900

    Article  CAS  Google Scholar 

  • Franzmann PD, Springer N, Ludwig W, Demacario EC, Rohde M (1992) A methanogenic archaeon from Ace Lake, Antarctica – Methanococcoides burtonii sp. nov. Syst Appl Microbiol 15:573–581

    Article  Google Scholar 

  • Franzmann PD, Liu YT, Balkwill DL et al (1997) Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int J Syst Evol Microbiol 47:1068–1072

    CAS  Google Scholar 

  • Fung I, John J, Lerner J et al (1991) Three-dimensional model synthesis of the global methane cycle. J Geophys Res: Atmos 96:13033–13065

    Article  CAS  Google Scholar 

  • Galand PE, Fritze H, Conrad R, Yrjala K (2005) Pathways for methanogenesis and diversity of methanogenic archaea in three boreal peatland ecosystems. Appl Environ Microbiol 71:2195–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galand PE, Yrjala K, Conrad R (2010) Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems. Biogeosciences 7:3893–3900

    Article  CAS  Google Scholar 

  • Gao X, Schlosser CA, Sokolov A, Anthony KW, Zhuang QL, Kicklighter D (2013) Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback. Environ Res Lett 8:035014

    Article  CAS  Google Scholar 

  • Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226

    Article  CAS  PubMed  Google Scholar 

  • Giaquinto L, Curmi PM, Siddiqui KS et al (2007) Structure and function of cold shock proteins in archaea. J Bacteriol 189:5738–5748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godin A, McLaughlin JW, Webster KL et al (2012) Methane and methanogen community dynamics across a boreal peatland nutrient gradient. Soil Biol Biochem 48:96–105

    Article  CAS  Google Scholar 

  • Inouye M, Phadtare S (2007) The cold-shock response. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 180–193

    Chapter  Google Scholar 

  • Jager D, Sharma CM, Thomsen J et al (2009) Deep sequencing analysis of the Methanosarcina mazei Go1 transcriptome in response to nitrogen availability. Pro Natl Acad Sci USA 106:21878–21882

    Article  Google Scholar 

  • Jassey VEJ, Chiapusio G, Binet P et al (2013) Above and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Glob Chang Biol 19:811–823

    Article  PubMed  Google Scholar 

  • Jeffries MO, Richter-Menge J, Overland JE (2015) Arctic report card 2015. http://www.arctic.noaa.gov/Report-Card

  • Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Wang Y, Dong X (2010) Methanol as the primary methanogenic and acetogenic precursor in the cold Zoige wetland at Tibetan Plateau. Microb Ecol 60:206–213

    Article  CAS  PubMed  Google Scholar 

  • Jin HJ, Wu J, Cheng GD et al (1999) Methane emissions from wetlands on the Qinghai-Tibet Plateau. Chin Sci Bull 44:2282–2286

    Article  CAS  Google Scholar 

  • Jones PG, Inouye M (1996) RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the cold-shock response. Mol Microbiol 21:1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Jungkunst HF (2010) Soil science Arctic thaw. Nat Geosci 3:306–307

    Article  CAS  Google Scholar 

  • Juottonen H, Galand PE, Tuittila ES et al (2005) Methanogen communities and bacteria along an ecohydrological gradient in a northern raised bog complex. Environ Microbiol 7:1547–1557

    Article  CAS  PubMed  Google Scholar 

  • Juottonen H, Tuittila ES, Juutinen S et al (2008) Seasonality of rDNA- and rRNA-derived archaeal communities and methanogenic potential in a boreal mire. ISME J 2:1157–1168

    Article  CAS  PubMed  Google Scholar 

  • Karr EA, Ng JM, Belchik SM et al (2006) Biodiversity of methanogenic and other Archaea in the permanently frozen Lake Fryxell, Antarctica. Appl Environ Microbiol 72:1663–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller JK, Bridgham SD (2007) Pathways of anaerobic carbon cycling across an ombrotrophic – minerotrophic peatland gradient. Limnol Oceanogr 52:96–107

    Article  CAS  Google Scholar 

  • Kendall MM, Wardlaw GD, Tang CF et al (2007) Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl Environ Microbiol 73:407–414

    Article  CAS  PubMed  Google Scholar 

  • Kobabe S, Wagner D, Pfeiffer EM (2004) Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation. FEMS Microbiol Ecol 50:13–23

    Article  CAS  PubMed  Google Scholar 

  • Kotiaho M, Fritze H, Merilä P et al (2010) Methanogen activity in relation to water table level in two boreal fens. Biol Fertil Soils 46:567–575

    Article  CAS  Google Scholar 

  • Kotsyurbenko OR, Chin K-J, Glagolev MV et al (2004) Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ Microbiol 6:1159–1173

    Article  CAS  PubMed  Google Scholar 

  • Kotsyurbenko OR, Friedrich MW, Simankova MV et al (2007) Shift from acetoclastic to H2-dependent methanogenesis in a west Siberian peat bog at low pH values and isolation of an acidophilic Methanobacterium strain. Appl Environ Microbiol 73:2344–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Qi L, Guo Y et al (2015) Global mapping transcriptional start sites revealed both transcriptional and post-transcriptional regulation of cold adaptation in the methanogenic archaeon Methanolobus psychrophilus. Sci Rep 5:9209. https://doi.org/10.1038/srep09209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu DY, Ding WX, Jia ZJ, Cai ZC (2011) Relation between methanogenic archaea and methane production potential in selected natural wetland ecosystems across China. Biogeosciences 8:329–338

    Article  CAS  Google Scholar 

  • Liu Y, Yao T, Gleixner G et al (2013) Methanogenic pathways, 13C isotope fractionation, and archaeal community composition in lake sediments and wetland soils on the Tibetan Plateau. J Geophys Res Biogeosci 118:650–664

    Article  CAS  Google Scholar 

  • Liu Y, Priscu JC, Xiong J et al (2016) Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau. FEMS Microbiol Ecol 92:fiw033

    Article  CAS  PubMed  Google Scholar 

  • Marti M, Juottonen H, Robroek BJM et al (2015) Nitrogen and methanogen community composition within and among three Sphagnum dominated peatlands in Scandinavia. Soil Biol Biochem 81:204–211

    Article  CAS  Google Scholar 

  • McEwing KR, Fisher JP, Zona D (2015) Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic. Plant Soil 388:37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng J, Xu J, Qin D et al (2014) Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses. ISME J 8:650–659

    Article  CAS  PubMed  Google Scholar 

  • Metje M, Frenzel P (2005) Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a northern wetland. Appl Environ Microbiol 71:8191–8200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metje M, Frenzel P (2007) Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. Environ Microbiol 9:954–964

    Article  CAS  PubMed  Google Scholar 

  • Mondav R, Woodcroft BJ, Kim EH et al (2014) Discovery of a novel methanogen prevalent in thawing permafrost. Nat Commun 5:3212

    Article  CAS  PubMed  Google Scholar 

  • Nichols DS, Miller MR, Davies NW et al (2004) Cold adaptation in the antarctic archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J Bacteriol 186:8508–8515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noon KR, Guymon R, Crain PF et al (2003) Influence of temperature on tRNA modification in Archaea: Methanococcoides burtonii (optimum growth temperature [T-opt], 23°C) and Stetteria hydrogenophila (T-opt, 95°C). J Bacteriol 185:5483–5490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phadtare S, Yamanaka K, Inouye M (2000) The cold shock reponse. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, DC, pp 33–45

    Google Scholar 

  • Piette F, Struvay C, Feller G (2011) The protein folding challenge in psychrophiles: facts and current issues. Environ Microbiol 13:1924–1933

    Article  CAS  PubMed  Google Scholar 

  • Prud’homme-Genereux A, Beran RK, Iost I et al (2004) Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a ‘cold shock degradosome’. Mol Microbiol 54:1409–1421

    Article  CAS  PubMed  Google Scholar 

  • Rivkina E, Shcherbakova V, Laurinavichius K et al (2007) Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61:1–15

    Article  CAS  PubMed  Google Scholar 

  • Rooney-Varga JN, Giewat MW, Duddleston KN et al (2007) Links between archaeal community structure, vegetation type and methanogenic pathway in Alaskan peatlands. FEMS Microbiol Ecol 60:240–251

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ (1984) Mechanisms of thermal adaptation in bacteria – blueprints for survival. Trends Biochem Sci 9:108–112

    Article  CAS  Google Scholar 

  • Saunders NFW, Thomas T, Curmi PMG et al (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Genome Res 13:1580–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuur EA, Abbott B (2011) Climate change: high risk of permafrost thaw. Nature 480:32–33

    Article  CAS  PubMed  Google Scholar 

  • Sharma CM, Vogel J (2014) Differential RNA-seq: the approach behind and the biological insight gained. Curr Opin Microbiol 19:97–105

    Article  CAS  PubMed  Google Scholar 

  • Simankova MV, Parshina SN, Tourova TP et al (2001) Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. Syst Appl Microbiol 24:362–367

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Kendall MM, Liu YT, Boone DR (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in Skan Bay, Alaska: description of Methanococcoides alaskense sp nov., and emended description of Methanosarcina baltica. Int J Syst Evol Microbiol 55:2531–2538

    Article  CAS  PubMed  Google Scholar 

  • Smith LC, Sheng Y, MacDonald GM, Hinzman LD (2005) Disappearing Arctic lakes. Science 308:1429–1429

    Article  CAS  PubMed  Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.). IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp

    Google Scholar 

  • Ström L, Ekberg A, Mastepanov M, Christensen TR (2003) The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Chang Biol 9:1185–1192

    Article  Google Scholar 

  • Taha, Siddiqui KS, Campanaro S, Najnin T et al (2016) Single TRAM domain RNA-binding proteins in Archaea: functional insight from Ctr3 from the Antarctic methanogen Methanococcoides burtonii. Environ Microbiol 18:2810–2824

    Article  CAS  PubMed  Google Scholar 

  • Tian JQ, Wang YF, Dong XZ (2010) Methanoculleus hydrogenitrophicus sp. nov., a methanogenic archaeon isolated from wetland soil. Int J Syst Evol Microbiol 60:2165–2169

    Article  CAS  PubMed  Google Scholar 

  • Tian JQ, Chen H, Dong XZ, Wang YF (2012) Relationship between archaeal community structure and vegetation type in a fen on the Qinghai-Tibetan Plateau. Biol Fertil Soils 48:349–356

    Article  Google Scholar 

  • Trenberth KE, Jones PD, Ambenje P et al (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York, pp 235–336

    Google Scholar 

  • Tveit AT, Urich T, Frenzel P, Svenning MM (2015) Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci U S A 112:E2507–E2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Huissteden J, Maximov TC, Dolman AJ (2005) High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia). J Geophys Res Biogeosci 110:G02002

    Google Scholar 

  • Vanwonterghem I, Evans PN, Parks DH et al (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1:16170. https://doi.org/10.1038/nmicrobiol.2016.170

    Article  CAS  PubMed  Google Scholar 

  • von Fischer JC, Hedin LO (2007) Controls on soil methane fluxes: tests of biophysical mechanisms using stable isotope tracers. Global Biogeochem Cycles 21:GB2007

    Google Scholar 

  • von Klein D, Arab H, Volker H, Thomm M (2002) Methanosarcina baltica, sp nov., a novel methanogen isolated from the Gotland Deep of the Baltic Sea. Extremophiles 6:103–110

    Article  Google Scholar 

  • Wagner D, Liebner S (2010) Methanogenesis in arctic permafrost habitats. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 655–663

    Chapter  Google Scholar 

  • Wagner D, Lipski A, Embacher A, Gattinger A (2005) Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ Microbiol 7:1582–1592

    Article  CAS  PubMed  Google Scholar 

  • Williams TJ, Burg DW, Raftery MJ et al (2010) Global proteomic analysis of the insoluble, soluble, and supernatant fractions of the psychrophilic archaeon Methanococcoides burtonii. Part I: the effect of growth temperature. J Proteome Res 9:640–652

    Article  CAS  PubMed  Google Scholar 

  • Williams TJ, Lauro FM, Ertan H et al (2011) Defining the response of a microorganism to temperatures that span its complete growth temperature range (−2°C to 28°C) using multiplex quantitative proteomics. Environ Microbiol 13:2186–2203

    Article  CAS  PubMed  Google Scholar 

  • Yavitt JB, Seidmann-Zager M (2006) Methanogenic conditions in northern peat soils. Geomicrobiol J 23:119–127

    Article  CAS  Google Scholar 

  • Yavitt JB, Yashiro E, Cadillo-Quiroz H, Zinder SH (2012) Methanogen diversity and community composition in peatlands of the central to northern Appalachian Mountain region, North America. Biogeochemistry 109:117–131

    Article  CAS  Google Scholar 

  • Yuan J, Ding W, Liu D et al (2016) Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion. Sci Rep 6:18777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Barry RG, Knowles K, Ling F, Armstrong RL (2003) Distribution of seasonally and perennially frozen ground in the Northern Hemisphere. In: Phillips SA (ed) Permafrost. Swets and Zeitlinger, Lisse, pp 1289–1294

    Google Scholar 

  • Zhang GS, Jiang N, Liu XL, Dong XZ (2008a) Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp nov., prevalent in Zoige wetland of the Tibetan plateau. Appl Environ Microbiol 74:6114–6120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GS, Tian JQ, Jiang N et al (2008b) Methanogen community in Zoige wetland of Tibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I. Environ Microbiol 10:1850–1860

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Liu X, Dong X (2014) Methanospirillum psychrodurum sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 64:638–641

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Yue L, Zhou L, Qi L, Li J, Dong X (2017) Conserved TRAM Domain Functions as an Archaeal Cold Shock Protein via RNA Chaperone Activity. Frontiers in Microbiology 8

    Google Scholar 

Download references

Acknowledgments

We thank the NSFC grants (31430001, 31670049) in supporting our study on the methanogenesis in Tibetan Plateau, from these projects we leant the knowledge and enable us to accomplish this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuzhu Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dong, X., Tian, J., Qi, L., Li, L. (2018). Methanogenesis at High Latitudes. In: Stams, A., Sousa, D. (eds) Biogenesis of Hydrocarbons. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-53114-4_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53114-4_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53114-4

  • Online ISBN: 978-3-319-53114-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics