Skip to main content

Design of New Multiferroic Oxides

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling
  • 778 Accesses

Abstract

Multiferroics materials, displaying magnetic, polar, and elastic order parameters simultaneously, have garnered intense interests because they may host electric-field controllable magnetism, which can be utilized in devices for information storage and processing. In this chapter, based on recent progress in understanding microscopic mechanisms supporting multiferroism and advances in materials synthesis, we describe the basic routes by which to design new multiferroic oxides using electronic structure based calculations to guide materials selection and discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aguado-Puente P, García-Fernández P, Junquera J (2011) Interplay of couplings between antiferrodistortive, ferroelectric, and strain degrees of freedom in monodomain PbTiO3/SrTiO3 superlattices. Phys Rev Lett 107:217601

    Google Scholar 

  • Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44:943

    Google Scholar 

  • Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA + U method. J Phys Condens Matter 9:767

    ADS  Google Scholar 

  • Aoyama T et al (2014) Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure. Nat Commun 5:4927

    Google Scholar 

  • Artyukhin S et al (2014) Landau theory of topological defects in multiferroic hexagonal manganites. Nat Mater 13:42–49

    Google Scholar 

  • Ascher E, Rieder H, Schmid H, Stoessel H (1966) Some properties of ferromagnetoelectric Nickel-Iodine boracite, Ni3B7O13I. J Appl Phys 37:1404

    Google Scholar 

  • Astrov DN (1960) The magnetoelectric effect in antiferromagnetics. Sov Phys JETP 11:708–709

    Google Scholar 

  • Baettig P, Seshadri R, Spaldin NA (2007) Anti-polarity in ideal BiMnO3. J Am Chem Soc 129:9854

    Article  Google Scholar 

  • Becher C et al (2015) Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nat Nanotechnol 10:661–665

    Google Scholar 

  • Belik A, Takayama-Muromachi E (2006) Magnetic properties of BiMnO3 studied with Dc and Ac magnetization and specific heat. Inorg Chem 45:10224

    Article  Google Scholar 

  • Belik A et al (2007) Origin of the monoclinic-to-monoclinic phase transition and evidence for the centrosymmetric crystal structure of BiMnO3. J Am Chem Soc 129:971

    Google Scholar 

  • Belik AA et al (2016) Low-temperature structural modulations in CdMn7O12, CaMn7O12, SrMn7O12, and PbMn7O12 Perovskites Studied by Synchrotron X-ray Powder Diffraction and Mössbauer Spectroscopy. J Phys Chem C 120:8278–8288

    Google Scholar 

  • Benedek NA, Fennie C (2011) Hybrid improper ferroelectricity: A mechanism for controllable polarization-magnetization coupling. J Phys Rev Lett 106:107204

    Google Scholar 

  • Benedek NA, Fennie CJ (2013) Why are there so few perovskite ferroelectrics? J Phys Chem C 117:13339

    Article  Google Scholar 

  • Benedek NA, Mulder AT, Fennie CJ (2012) Polar octahedral rotations: A path to new multifunctional materials. J Solid State Chem 195:11–20

    Article  ADS  Google Scholar 

  • Benedek NA et al (2015) Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalton Trans 44:10543–10558

    Google Scholar 

  • Boström HLB, Senn MS, Goodwin AL (2018) Recipes for improper ferroelectricity in molecular perovskites. Nature Communicatons 9:2380

    Google Scholar 

  • Bousquet E et al (2008) Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452:732–736

    Article  ADS  Google Scholar 

  • Cao K, Guo G-C, Vanderbilt D, He L (2009) First-principles modeling of multiferroic RMn2O5. Phys Rev Lett 103:257201

    Google Scholar 

  • Ceperley DM, Alder B (1980) Ground state of the electron gas by a stochastic method. J Phys Rev Lett 45:566

    ADS  Google Scholar 

  • Chapon LC et al (2004) Structural anomalies and multiferroic behavior in magnetically frustrated TbMn2O5. Phys Rev Lett 93:177402

    Google Scholar 

  • Cheong S-W, Mostovoy M (2007) Multiferroics: A magnetic twist for ferroelectricity. Nat Mater 6:13–20

    Google Scholar 

  • Chien C-L, DeBenedetti S, Barros F, De S (1974) Magnetic properties of EuTiO3, Eu2TiO4, and Eu3Ti2O7. Phys Rev B 10:3913

    Google Scholar 

  • Chmaissem O et al (2001) Relationship between structural parameters and the Néel temperature in Sr1–xCaxMnO3 (0<∼x<∼1) and Sr1–yBayMnO3 (y<∼0.2). Phys Rev B 64:134412

    Google Scholar 

  • Choi YJ et al (2008) Ferroelectricity in an ising chain magnet. Phys Rev Lett 100:047601

    Google Scholar 

  • Choi T et al (2010) Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat Mater 9:253–258

    Article  ADS  Google Scholar 

  • Chu YH et al (2008) Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat Mater 7:478–482

    Article  ADS  Google Scholar 

  • Das H et al (2014) Bulk magnetoelectricity in the hexagonal manganites and ferrites. Nat Commun 5:2998

    Google Scholar 

  • de Groot J et al (2012) Charge order in LuFe2O4: An unlikely route to ferroelectricity. Phys Rev Lett 108:187601

    Google Scholar 

  • Deslippe J et al (2012) Berkeley GW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures. Comput Phys Commun 183:1269–1289

    Google Scholar 

  • Di Domenico M, Eibschutz M, Guggenheim HJ, Camlibel I (1969) Dielectric behavior of ferroelectric BaMF4 above room temperature. Solid State Commun 7:1119–1122

    Google Scholar 

  • Diéguez O, Iñiguez J (2015) First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys Rev B 91:184113

    Google Scholar 

  • Dieguez O, Gonzalez-Vazquez OE, WojdeÅ‚ JC, Iñiguez J (2011) First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys Rev B 83:094105

    Google Scholar 

  • Duan C-G, Jaswal SS, Tsymbal EY (2006) Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: Ferroelectric control of magnetism. Phys Rev Lett 97:047201

    Google Scholar 

  • Dzyaloshinskii IE (1960) On the magneto-electrical effect in antiferromagnets. Sov Phys JETP 10:628–629

    Google Scholar 

  • Ederer C, Fennie CJ (2008) Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO3 versus BiFeO3. J Phys Condens Matter 20:434219

    ADS  Google Scholar 

  • Ederer C, Spaldin NA (2005) Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B 71:060401(R)

    Google Scholar 

  • Erenstein W, Mathur ND, Scott JF (2006) Scott: Multiferroic and magnetoelectric materials. Nature 442:759–765

    Google Scholar 

  • Efremov DV, Van den Brink J, Khomskii DI (2004) Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nat Mater 3:853–856

    Google Scholar 

  • Ergönenc Z, Kim B, Liu P, Kresse G, Franchini C (2018) Converged GW quasiparticle energies for transition metal oxide perovskites. Phys Rev Mater 2:024601

    Google Scholar 

  • Faqir H, Chiba H, Kikuchi M, Syono Y, Mansori M, Satre P, Sebaoun A (1999) High-temperature XRD and DTA studies of BiMnO3 perovskite. J Solid State Chem 142:113–119

    Article  ADS  Google Scholar 

  • Fennie C (2008) Ferroelectrically induced weak ferromagnetism by design. J Phys Rev Lett 100:167203

    Google Scholar 

  • Fennie CJ, Rabe KM (2005) Ferroelectric transition in YMnO3 from first principles. Phys Rev B 72:100103(R)

    Google Scholar 

  • Fennie CJ, Rabe KM (2006) Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys Rev Lett 97:267602

    Google Scholar 

  • Fiebig M et al (2000) Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation. Phys Rev Lett 84:5620

    Google Scholar 

  • Fiebig M et al (2002) Observation of coupled magnetic and electric domains. Nature 419:818–820

    Google Scholar 

  • Fiebig M, Lottermoser T, Meier D, Trassin M (2016) The evolution of multiferroics. Nat Rev Mater 1:16046

    Article  Google Scholar 

  • Fox DL, Tilley DR, Scott JF, Guggenheim H (1980) Magnetoelectric phenomena in BaMnF4 and BaMn0.99Co0.01F4. J Phys Rev B 21:2926

    Google Scholar 

  • Gajek M et al (2007) Tunnel junctions with multiferroic barriers. Nat Mater 6:296–302

    Google Scholar 

  • Geller S, Wood EA (1956) Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3. Acta Crystallogr 9:563–568

    Google Scholar 

  • Ghosh S, Das H, Fennie CJ (2015) Linear magnetoelectricity at room temperature in perovskite superlattices by design. Phys Rev B - Condens Matter Mater Phys 92:184112

    Article  Google Scholar 

  • Giovannetti G, Capone M (2014) Dual nature of the ferroelectric and metallic state in LiOsO3. Phys Rev B - Condens Matter Mater Phys 90:195113

    Google Scholar 

  • Giovannetti G et al (2011) Dielectric properties and magnetostriction of the collinear multiferroic spinel CdV2O4. Phys Rev B - Condens Matter Mater Phys 83:060402(R)

    Google Scholar 

  • Giovannetti G et al (2016) Magnetoelectric coupling in the type-I multiferroic ScFeO3. Phys Rev B 94:195116

    Google Scholar 

  • Goian V et al (2012) Absence of ferroelectricity in BiMnO3 ceramics. J Appl Phys 112:074112

    Article  ADS  Google Scholar 

  • Goodenough JB, Longo JM (1970) Landolt-Börnstein, numerical data and functional relationships in science and technology, New series, vol III.4. Springer, Berlin, p 126

    Google Scholar 

  • Han TC, Chao HH (2010) Observation of large electric polarization in orthorhombic TmMnO3 thin films. Appl Phys Lett 97:232902

    Article  ADS  Google Scholar 

  • Harris AB (2011) Symmetry analysis for the Ruddlesden-Popper systems Ca3Mn2O7 and Ca3Ti2O7. Phys Rev B - Condens Matter Mater Phys 84:064116

    Google Scholar 

  • Hemberger J et al (2007) Multiferroic phases of Eu1?xYxMnO3. Phys Rev B 75:035118

    Google Scholar 

  • Heron JT et al (2011) Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys Rev Lett 107:217202

    Google Scholar 

  • Heron JT et al (2014) Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516:370–373

    Google Scholar 

  • Higashiyama D, Miyasaka S, Tokura Y (2005) Magnetic-field-induced polarization and depolarization in HoMn2O5 and ErMn2O5. Phys Rev B - Condens Matter Mater Phys 72:064421

    Google Scholar 

  • Hill NA (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104:6694–6709

    Google Scholar 

  • Hill NA, Rabe KM (1999) First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite. Phys Rev B - Condens Matter Mater Phys 59:8759

    Article  Google Scholar 

  • Hong J et al (2012) Spin-phonon coupling effects in transition-metal perovskites: A DFT+U and hybrid-functional study. Phys Rev B - Condens Matter Mater Phys 85:054417

    Google Scholar 

  • Hubbard J (1963) Electron Correlations in Narrow Energy Bands. Proc R Soc A Math Phys Eng Sci 276:238–257

    Article  Google Scholar 

  • Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong S-W (2004a) Electric polarization reversal in a multiferroic material induced by magnetic fields. Nature 429:392–395

    Google Scholar 

  • Hur N et al (2004b) Colossal magnetodielectric effects in DyMn2O5. Phys Rev Lett 93:107207

    Google Scholar 

  • Hybertsen MS, Louie SG (1986) Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys Rev B 34:5390

    Google Scholar 

  • Ikeda N et al (2000) Charge frustration and dielectric dispersion in LuFe2O4. J Phys Soc Jpn 69:1526–1532

    Google Scholar 

  • Ikeda N et al (2005) Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature 436:1136–1138

    Google Scholar 

  • Ismailza IG, Kizhaev SA (1965) Determination of the curie point of the ferroelectrics ymno3 and ybmno3 High temperature X-ray examination of yttrium manganate and ytterbium. Sov Phys Solid State 7:236

    Google Scholar 

  • Jardon C et al (1999) Experimental study of charge ordering transition in Pr0.67Ca0.33MnO3. J Magn Magn Mater 196:475–476

    Google Scholar 

  • Jia C-L et al (2008) Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat Mater 7:57–61

    Google Scholar 

  • Johnson RD, Radaelli PG (2014) Diffraction studies of multiferroics. Annu Rev Mater Res 44:269–298

    Article  Google Scholar 

  • Johnson RD et al (2012) Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys Rev Lett 108:067201

    Google Scholar 

  • Johnson RD et al (2013) X-Ray imaging and multiferroic coupling of cycloidal magnetic domains in ferroelectric monodomain BiFeO3. Phys Rev Lett 110:217206

    Google Scholar 

  • Kagomiya I et al (2003) Lattice distortion at ferroelectric transition of YMn2O5. Ferroelectrics 286:167–174

    Google Scholar 

  • Kato K, Iida S, Yanai K, Mizushima K (1983) Ferrimagnetic ferroelectricity of Fe3O4. J Magn Magn Mater 783:31–34

    Google Scholar 

  • Katsufuji T, Takagi H (2001) Coupling between magnetism and dielectric properties in quantum paraelectric EuTiO3. Phys Rev B - Condens Matter Mater Phys 64:054415

    Google Scholar 

  • Katsura H, Nagaosa N, Balatsky AV (2005) Spin current and magnetoelectric effect in noncollinear magnets. Phys Rev Lett 95:057205

    Google Scholar 

  • Kenzelmann M et al (2005) Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. Phys Rev Lett 95:087206

    Google Scholar 

  • Khomskii DI (2006) Multiferroics: Different ways to combine magnetism and ferroelectricity. J Magn Magn Mater 306:1–8

    Google Scholar 

  • Khomskii DI (2009) Classifying multiferroics: Mechanisms and effects. Physics (College Park, Md). 2:20

    Google Scholar 

  • Kimura T et al (2003a) Magnetic control of ferroelectric polarization. Nature 426:55–58

    Google Scholar 

  • Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y (2003b) Magnetocapacitance effect in multiferroic BiMnO3. Phys Rev B - Condens Matter Mater Phys 67:180401(R)

    Google Scholar 

  • Kimura T, Lawes G, Goto T, Tokura Y, Ramirez AP (2005) Magnetoelectric phase diagrams of orthorhombic RMnO3 (R=Gd, Tb, and Dy). Phys Rev B - Condens Matter Mater Phys 71:224425

    Google Scholar 

  • Kimura T, Lashley JC, Ramirez AP (2006) Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Phys Rev B - Condens Matter Mater Phys 73:220401(R)

    Google Scholar 

  • King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47:1651

    Google Scholar 

  • Kiselev SV, Ozerov RP, Zhdanov GS (1963) Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov Phys Dokl 7:742

    Google Scholar 

  • Krukau AV, Vydrov OA, Izmaylov AF, Scuseria GE (2006) Influence of the exchange screening parameter on the performance of screened hybrid functionals. J Chem Phys 125:224106

    Google Scholar 

  • Kumagai Y, Spaldin N (2013) Structural domain walls in polar hexagonal manganites. Nat Commun 4:1540

    Google Scholar 

  • Kurumaji T et al (2011) Magnetic-field induced competition of two multiferroic orders in a triangular-lattice helimagnet MnI2. Phys Rev Lett 106:167206

    Google Scholar 

  • Landau LD, Lifshitz EML (1959) Electrodynamics of continuous media. Fizmatgiz, Moscow

    Google Scholar 

  • Lee JH, Rabe KM (2010) Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys Rev Lett 104:207204

    Google Scholar 

  • Lee JH et al (2010) A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466:954–958

    Google Scholar 

  • Liu XQ et al (2015) Hybrid improper ferroelectricity in Ruddlesden-Popper Ca3(Ti,Mn)2O7 ceramics. Appl Phys Lett 106:202903

    Google Scholar 

  • Lottermoser T et al (2004) Magnetic phase control by an electric field. Nature 430:541–544

    Article  ADS  Google Scholar 

  • Lu X-Z, Rondinelli JM (2016) Epitaxial-strain-induced polar-to-nonpolar transitions in layered oxides. Nat Mater 15:951–955

    Article  ADS  Google Scholar 

  • Lu X-Z, Rondinelli JM (2016) Epitaxial-strain-induced polar-to-nonpolar transitions in layered oxides. Nat Mater 15:951–955

    Google Scholar 

  • Lu X-Z, Rondinelli JM (2017) Room temperature electric-field control of magnetism in layered oxides with cation order. Adv Funct Mater 27:1604312

    Google Scholar 

  • Lu XZ, Xiang H (2014) Designing asymmetric multiferroics with strong magnetoelectric coupling. J Phys Rev B - Condens Matter Mater Phys 90:104409

    Article  Google Scholar 

  • Lu XZ, Whangbo M-H, Dong S, Gong XG, Xiang H (2012) Giant ferroelectric polarization of CaMn7O12 induced by a combined effect of Dzyaloshinskii-Moriya interaction and exchange striction. J Phys Rev Lett 108:187204

    Google Scholar 

  • Lu XZ, Gong XG, Xiang HJ (2014) Polarization enhancement in perovskite superlattices by oxygen octahedral tilts. Comput Mater Sci 91:310–314

    Google Scholar 

  • Lu C, Hu W, Tian Y, Wu T (2015a) Multiferroic oxide thin films and heterostructures. Appl Phys Rev 2:021304

    Google Scholar 

  • Lu XZ, Wu X, Xiang HJ (2015b) General microscopic model of magnetoelastic coupling from first principles. Phys Rev B - Condens Matter Mater Phys 91:100405(R)

    Article  Google Scholar 

  • Lubk A, Gemming S, Spaldin NA (2009) First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys Rev B - Condens Matter Mater Phys 80:104110

    Article  Google Scholar 

  • Malashevich A, Vanderbilt D (2008) First principles study of improper ferroelectricity in TbMnO3. Phys Rev Lett 101:037210

    Google Scholar 

  • McGuire TR et al (1966) Structure of EuTiO3. J Appl Phys 37:981–982

    Google Scholar 

  • Mercone S et al (2004) Anomaly in the dielectric response at the charge-orbital-ordering transition of Pr0.67Ca0.33MnO3. Phys Rev B - Condens Matter Mater Phys 69:174433

    Google Scholar 

  • Meyer B, Vanderbilt (2002) Ab initio study of ferroelectric domain walls in PbTiO3. Phys Rev B 65:104111

    Google Scholar 

  • Mitsui T et al (1981) Landolt-Börnstein, numerical data and functional relationships in science and technology, New series, vol 16(1). Springer, Berlin

    Google Scholar 

  • Montanari E, Righi L, Calestani G, Migliori A, Gilioli E, Bolzoni F (2005) Room temperature polymorphism in metastable BiMnO3 prepared by high-pressure synthesis. Chem Mater 17:1765–1773

    Article  Google Scholar 

  • Montanari E et al (2007) Structural anomalies at the magnetic transition in centrosymmetric BiMnO3. Phys Rev B - Condens Matter Mater Phys 75:220101(R)

    Google Scholar 

  • Moreira dos Santos A, Parashar S, Raju AR, Zhao YS, Cheetham AK, Rao CNR (2002a) Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Commun 122:49–52

    Article  ADS  Google Scholar 

  • Moreira dos Santos A, Cheetham AK, Atou T, Syono Y, Yamaguchi Y, Ohoyama K, Chiba H, Rao CNR (2002b) Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO3. Phys Rev B 66:064425

    Google Scholar 

  • Moriya T (1960a) Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev 120:91

    Article  ADS  Google Scholar 

  • Moriya T (1960b) New mechanism of anisotropic superexchange interaction. Phys Rev Lett 4:228

    Article  ADS  Google Scholar 

  • Mostovoy M (2006) Ferroelectricity in spiral magnets. Phys Rev Lett 96:067601

    Article  Google Scholar 

  • Mulder AT, Benedek NA, Rondinelli JM, Fennie CJ (2013) Turning ABO3 antiferroelectrics into ferroelectrics: Design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden-popper compounds. Adv Funct Mater 23:4810–4820

    Google Scholar 

  • Mundy JA et al (2016) Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537:523–527

    Google Scholar 

  • Nakajima T et al (2008) Electric polarization induced by a proper helical magnetic ordering in a delafossite multiferroic CuFe1-xAlxO2. Phys Rev B - Condens Matter Mater Phys 77:052401

    Google Scholar 

  • Nakamura M, Tokunaga Y, Kawasaki M, Tokura Y (2011) Multiferroicity in an orthorhombic YMnO3 single-crystal film. Appl Phys Lett 98:082902

    Article  ADS  Google Scholar 

  • Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM (2005) First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys Rev B - Condens Matter Mater Phys 71:014113

    Google Scholar 

  • Noda K et al (2006) Magnetic-field-induced switching between ferroelectric phases in orthorhombic-distortion-controlled RMnO3. J Appl Phys 99:08S905

    Article  Google Scholar 

  • Nowadnick E, Fennie C (2016) Domains and ferroelectric switching pathways in Ca3Ti2O7 from first principles. J Physical Review B 94:104105

    Google Scholar 

  • Oh YS, Luo X, Huang F-T, Wang Y, Cheong S-W (2015) Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals. Nat Mater 14:407–413

    Google Scholar 

  • Paiera J, Marsman M, Hummer K, Kresse G (2006) Screened hybrid density functionals applied to solids. J Chem Phys 124:154709

    Google Scholar 

  • Pearson RG (1975) Concerning Jahn-Teller effects. PNAS 72:2104–2106

    Google Scholar 

  • Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Google Scholar 

  • Perdew JP et al (2008) Generalized gradient approximation for solids and their surfaces. Phys Rev Lett 100:136406

    Google Scholar 

  • Picozzi S, Stroppa A (2012) Advances in ab-initio theory of multiferroics materials and mechanisms: Modelling and understanding. Eur Phys J B 85:240

    Google Scholar 

  • Picozzi S, Yamauchi K, Sanyal B, Sergienko IA, Dagotto E (2007) Dual nature of improper ferroelectricity in a magnetoelectric multiferroic. Phys Rev Lett 99:227201

    Google Scholar 

  • Picozzi S, Yamauchi K, Sergienko IA, Sen C, Sanyal B, Dagotto E (2008) Microscopic mechanisms for improper ferroelectricity in multiferroic perovskites: A theoretical review. J Phys Condens Matter 20:434208

    Google Scholar 

  • Puggioni D, Giovannetti G, Capone M, Rondinelli JM (2015) Design of a mott multiferroic from a nonmagnetic polar metal. Phys Rev Lett 115:087202

    Google Scholar 

  • Radaelli PG et al (2009) Incommensurate magnetic structure of YMn2O5: A stringent test of the multiferroic mechanism. Phys Rev B - Condens Matter Mater Phys 79:020404(R)

    Google Scholar 

  • Radaelli G et al (2014) Electric control of magnetism at the Fe/BaTiO3 interface. Nat Commun 5:3404

    Google Scholar 

  • Ramesh R, Spaldin NA (2007) Multiferroics: Progress and prospects in thin films. Nat Mater 6:21–29

    Google Scholar 

  • Resta R (1992) Theory of the electric polarization in crystals. Ferroelectrtics 136:51–55

    Google Scholar 

  • Resta R (1994) Macroscopic polarization in crystalline dielectrics: The geometric phase approach. Rev Mod Phys 66:899–915

    Google Scholar 

  • Rohlfing M, Louie SG (2000) Electron-hole excitations and optical spectra from first principles. Phys Rev B - Condens Matter Mater Phys 62:4927

    Article  Google Scholar 

  • Rondinelli JM, Fennie CJ (2012) Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv Mater 24:1961–1968

    Google Scholar 

  • Rondinelli JM, Poeppelmeier KR, Zunger A (2015) Research update: Towards designed functionalities in oxide-based electronic materials. APL Mater 3:080702

    Google Scholar 

  • Schlom DG et al (2014) Elastic strain engineering of ferroic oxides. MRS Bull 39:118–130

    Google Scholar 

  • Schmid H (1994) Multi-ferroic magnetoelectrics. Ferroelectrics 162:317–338

    Article  Google Scholar 

  • Seixas L, Rodin AS, Carvalho A, Castro Neto AH (2016) Multiferroic Two-dimensional materials. Phys Rev Lett 116:206803

    Google Scholar 

  • Seki S et al (2007) Impurity-doping-induced ferroelectricity in the frustrated antiferromagnet CuFeO2. Phys Rev B - Condens Matter Mater Phys 75:100403(R)

    Google Scholar 

  • Seki S, Onose Y, Tokura Y (2008) Spin-driven ferroelectricity in triangular lattice antiferromagnets ACrO2 (A=Cu, Ag, Li, or Na). Phys Rev Lett 101:067204

    Google Scholar 

  • Senn MS et al (2015) Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-popper perovskites by symmetry trapping. Phys Rev Lett 114:035701

    Google Scholar 

  • Sergienko IA, Dagotto E (2006) Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys Rev B - Condens Matter Mater Phys 73:094434

    Article  Google Scholar 

  • Sergienko IA, Sen C, Dagotto E (2006) Ferroelectricity in the magnetic E-phase of orthorhombic perovskites. Phys Rev Lett 97:227204

    Article  Google Scholar 

  • Seshadri R, Hill NA (2001) Visualizing the role of Bi 6s `lone pairs' in the off-center distortion in ferromagnetic BiMnO3. Chem Mater 13:2892–2899

    Article  Google Scholar 

  • Shi Y et al (2013) A ferroelectric-like structural transition in a metal. Nat Mater 12:1024–1027

    Google Scholar 

  • Sim H, Kim BG (2014) First-principles study of octahedral tilting and ferroelectric-like transition in metallic LiOsO3. Phys Rev B 89:201107(R)

    Google Scholar 

  • Solovyev IV, Dederichs PH, Anisimov VI (1994) Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. Phys Rev B 50:16861

    Google Scholar 

  • Sosnowska I, Neumaier TP, Steichele E (1982) Spiral magnetic ordering in bismuth ferrite. J Phys C Solid State Phys 15:4835–4846

    Article  ADS  Google Scholar 

  • Spaldin NA, Cheong S-W, Ramesh R (2010) Multiferroics: Past, present, and future. Phys Today 63:38–43

    Google Scholar 

  • Stengel M (2011) Band alignment at metal/ferroelectric interfaces: Insights and artifacts from first principles. Phys Rev B - Condens Matter Mater Phys 83:235112

    Google Scholar 

  • Stroppa A, Picozzi S (2010) Hybrid functional study of proper and improper multiferroics. Phys Chem Chem Phys 12:5405–5416

    Article  Google Scholar 

  • Stroppa A, Marsman M, Kresse G, Picozzi S (2010) The multiferroic phase of DyFeO3: An ab initio study. New J Phys 12:093026

    Article  ADS  Google Scholar 

  • Stroppa A et al (2011) Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal-organic framework. Angew Chem Int Ed 50:5847–5850

    Google Scholar 

  • Stroppa A, Barone P, Jain P, Perez-Mato JM, Picozzi S (2013) Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal-organic framework. Adv Mater 25:2284–2290

    Google Scholar 

  • Sun J et al (2012) Communication: Effect of the orbital-overlap dependence in the meta generalized gradient approximation. J Chem Phys 137:051101

    Google Scholar 

  • Sun J et al (2013) Semilocal and hybrid meta-generalized gradient approximations based on the understanding of the kinetic-energy-density dependence. J Chem Phys 138:044113

    Google Scholar 

  • Sun J, Ruzsinszky A, Perdew JP (2015) Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett 115:036402

    Google Scholar 

  • Sun J et al (2016) Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat Chem 8:831–836

    Google Scholar 

  • Takeda T, Ohara SJ (1974) Magnetic structure of the cubic perovskite type SrMn03. Phys Soc Jpn 37:275

    Article  ADS  Google Scholar 

  • Teague JR, Gerson R, James WJ (1970) Dielectric hysteresis in single crystal BiFeO3. Solid State Commun 8:1073–1074

    Article  ADS  Google Scholar 

  • Tolédano P et al (2015) Primary ferrotoroidicity in antiferromagnets. Phys Rev B 92:094431

    Article  Google Scholar 

  • Van Aken BB, Palstra TTM, Filippetti A, Spaldin NA (2004) The origin of ferroelectricity in magnetoelectric YMnO3. Nat Mater 3:164–170

    Google Scholar 

  • Van Aken BB, Rivera J-P, Schmid H, Fiebig M (2007) Observation of ferrotoroidic domains. Nature 449:702–705

    Google Scholar 

  • Van den Brink J, Khomskii DI (2008) Multiferroicity due to charge ordering. J Phys Condens Matter 20:434217

    Article  Google Scholar 

  • Vanderbilt D, King-Smith RD (1993) Electric polarization as a bulk quantity and its relation to surface charge. Phys Rev B 48:4442

    Google Scholar 

  • Varga T et al (2009) Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3. Phys Rev Lett 103:047601

    Google Scholar 

  • Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211

    Google Scholar 

  • Wang J et al (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722

    Article  ADS  Google Scholar 

  • Wang C, Guo G-C, He L (2007) Ferroelectricity driven by the noncentrosymmetric magnetic ordering in multiferroic TbMn2O5: A first-principles study. Phys Rev Lett 99:177202

    Google Scholar 

  • Wang C, Guo G-C, He L (2008) First-principles study of the lattice and electronic structure of TbMn2O5. Phys Rev B 77:134113

    Google Scholar 

  • Wang KF, Liu J-M, Ren ZF (2009) Multiferroicity: The coupling between magnetic and polarization orders. Adv Phys 58:321–448

    Google Scholar 

  • Wang W et al (2013) Room-temperature multiferroic hexagonal LuFeO3 films. Phys Rev Lett 110:237601

    Google Scholar 

  • Wang PS, Ren W, Bellaiche L, Xiang H (2015) Predicting a Ferrimagnetic Phase of Zn2FeOsO6 with Strong Magnetoelectric Coupling. J Phys Rev Lett 114:147204

    Google Scholar 

  • Wang PS, Lu XZ, Gong XG, Xiang HJ (2016) Microscopic mechanism of spin-order induced improper ferroelectric polarization. Comput Mater Sci 112:448–458

    Google Scholar 

  • Xiang HJ, Whangbo M-H (2007) Charge order and the origin of giant magnetocapacitance in LuFe2O4. Phys Rev Lett 98:246403

    Google Scholar 

  • Xiang HJ, Wei S-H, Whangbo M-H, Da Silva JLF (2008) Spin-orbit coupling and ion displacements in multiferroic TbMnO3. Phys Rev Lett 101:037209

    Google Scholar 

  • Xiang HJ, Kan EJ, Wei S-H, Whangbo M-H, Gong XG (2011a) Predicting the spin-lattice order of frustrated systems from first principles. Phys Rev B 84:224429

    Google Scholar 

  • Xiang HJ et al (2011b) General theory for the ferroelectric polarization induced by spin-spiral order. Phys Rev Lett 107:157202

    Google Scholar 

  • Xiang H, Lee C, Koo H-J, Gong X, Whangbo M-H (2013a) Magnetic properties and energy-mapping analysis. Dalton Trans 42:823–853

    Google Scholar 

  • Xiang HJ, Wang PS, Whangbo M-H, Whangbo, Gong XG (2013b) Unified model of ferroelectricity induced by spin order. Phys Rev B - Condens Matter Mater Phys 88:054404

    Article  Google Scholar 

  • Yang SY et al (2010) Above-bandgap voltages from ferroelectric photovoltaic devices. Nat Nanotechnol 5:143–147

    Google Scholar 

  • Young J, Stroppa A, Picozzi S, Rondinelli JM (2015) Anharmonic lattice interactions in improper ferroelectrics for multiferroic design. J Phys Condens Matter 27:283202

    Google Scholar 

  • Zanolli Z, WojdeÅ‚ JC, Iñiguez J, Ghosez P (2013) Electric control of the magnetization in BiFeO3/LaFeO3 superlattices. Phys Rev B - Condens Matter Mater Phys 88:060102(R)

    Google Scholar 

  • Zhang G et al (2011) Multiferroic properties of CaMn7O12. Phys Rev B - Condens Matter Mater Phys 84:174413

    Google Scholar 

  • Zhang H-G, Ma X-C, Xie L (2015) The structural and magnetic properties of Sr-doped multiferroic CaMn7O12. Int J Mod Phys B 29:1550221

    Google Scholar 

  • Zhao T et al (2006) Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat Mater 5:823–829

    Article  ADS  Google Scholar 

  • Zhao HJ et al (2014) Near roomerature multiferroic materials with tunable ferromagnetic and electrical properties. Nat Commun 5:4021

    Google Scholar 

  • Zhong W, Vanderbilt D, Rabe KM (1994) Phase transitions in BaTiO3 from first principles. Phys Rev Lett 73:1861

    Article  ADS  Google Scholar 

  • Zhong W, Vanderbilt D, Rabe KM (1995) First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. Phys Rev B 52:6301

    Article  ADS  Google Scholar 

  • Zimmermann AS, Meier D, Fiebig M (2014) Ferroic nature of magnetic toroidal order. Nat Commun 5:4796

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Rondinelli .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lu, XZ., Rondinelli, J.M. (2019). Design of New Multiferroic Oxides. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics