Skip to main content

Mesoscale Mechanisms of Cement Hydration: BNG Model and Particle Simulations

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

Cement paste is the most widely used artificial material on Earth, causing massive CO2 emissions. To address the problem, new chemical formulations are being explored, but these come with uncertainties around the kinetics of strength development and degradation. This kinetics is largely controlled by the precipitation of mesoporous solid phases from ionic aqueous solution. Modeling the precipitation process is a key step to understand and control the properties of future, more sustainable, cements. This manuscript starts by considering the classical boundary nucleation and growth (BNG) model of cement minerals precipitation. The mechanisms of nucleation and growth and the corresponding parameters governing the model are discussed. The next step is to relate these mechanisms and parameters to the chemistry of the liquid and solid phases involved. This requires more fundamental models, and, to this end, nanoparticle simulations of cement mineral precipitation and morphology development are presented. These simulations are indeed shown to relate some input parameters of the BNG model to the chemistry of the paste. An outlook is finally provided, discussing some outstanding extensions of nanoparticle simulations that could deepen the current understanding of cement hydration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen AJ, Thomas JJ, Jennings HM (2007) Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat Mater 6:311–316

    Article  ADS  Google Scholar 

  • Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7(12):1103–1112

    ADS  Google Scholar 

  • Avrami M (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys 8(2):212–224

    Google Scholar 

  • Bažant Z, Donmez A, Masoero E, Aghdam SR (2015) Interaction of concrete creep, shrinkage and swelling with water, hydration, and damage: nano-macro-chemo. In: Hellmich C, Pichler B, Kollegger J (eds) Proceedings of the 10th international conference on mechanics and physics of creep, shrinkage, and durability of concrete and concrete structures, Vienna. ASCE Library, pp 1–12

    Google Scholar 

  • Bullard JW, Jennings HM, Livingston RA, Nonat A, Scherer GW, Schweitzer JS, Scrivener KL, Thomas JJ (2011) Mechanisms of cement hydration. Cem Concr Res 41:1208–1223

    Article  Google Scholar 

  • Bullard JW, Scherer GW, Thomas JJ (2015) Time dependent driving forces and the kinetics of tricalcium silicate hydration. Cem Concr Res 74:26–34

    Article  Google Scholar 

  • Cahn JW (1956) The kinetics of grain boundary nucleated reactions. Acta Metall 4(5):449–459

    Article  Google Scholar 

  • Constantinides G, Ulm FJ (2007) The nanogranular nature of C–S–H. J Mech Phys Solids 55: 64–90

    Article  ADS  Google Scholar 

  • Costoya MM (2008) Effect of particle size distribution on the hydration kinetics and microstructural development of tricalcium silicate. PhD thesis, EPFL, Lausanna

    Google Scholar 

  • Del Gado E, Ioannidou K, Masoero E, Baronnet A, Pellenq RM, Ulm FJ, Yip S (2014) A soft matter in construction–statistical physics approach to formation and mechanics of C–S–H gels in cement. Eur Phys J Spec Top 223(11):2285–2295

    Article  Google Scholar 

  • Del Gado E, Ioannidou K, Masoero E, Pellenq RJM, Ulm FJ, Yip S (2015) The meso-scale texture of cement hydrate gels: out-of-equilibrium evolution and thermodynamic driving. In: Hellmich C, Pichler B, Kollegger J (eds) Proceedings of the 10th international conference on mechanics and physics of creep, shrinkage, and durability of concrete and concrete structures, Vienna. ASCE Library, pp 34–38

    Google Scholar 

  • European Commission (2011) A roadmap for moving to a competitive low carbon economy in 2050. European Commission, Bruxelles

    Google Scholar 

  • Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Access Online via Elsevier

    MATH  Google Scholar 

  • Garrault S, Behr T, Nonat A (2006) Formation of the C-S-H layer during early hydration of tricalcium silicate grains with different sizes. J Phys Chem B 110(1):270–275

    Article  Google Scholar 

  • Grant SA, Boitnott GE, Korhonen CJ, Sletten RS (2006) Effect of temperature on hydration kinetics and polymerization of tricalcium silicate in stirred suspensions of cao-saturated solutions. Cem Concr Res 36(4):671–677

    Article  Google Scholar 

  • Ioannidou K, Pellenq RJM, Del Gado E (2014) Controlling local packing and growth in calcium–silicate–hydrate gels. Soft Matter 10:1121–1133

    Article  ADS  Google Scholar 

  • Ioannidou K, Krakowiak KJ, Bauchy M, Hoover CG, Masoero E, Yip S, Ulm FJ, Levitz P, Pellenq RJM, Del Gado E (2016) Mesoscale texture of cement hydrates. Proc Natl Acad Sci 113(8):2029–2034

    Article  ADS  Google Scholar 

  • Jennings HM (2008) Refinements to colloid model of CSH in cement: Cm-ii. Cem Concr Res 38(3):275–289

    Article  Google Scholar 

  • Juenger M, Winnefeld F, Provis JL, Ideker J (2011) Advances in alternative cementitious binders. Cem Concr Res 41(12):1232–1243

    Article  Google Scholar 

  • Juilland P, Gallucci E, Flatt R, Scrivener K (2010) Dissolution theory applied to the induction period in alite hydration. Cem Concr Res 40(6):831–844

    Article  Google Scholar 

  • Königsberger M, Hellmich C, Pichler B (2016) Densification of CSH is mainly driven by available precipitation space, as quantified through an analytical cement hydration model based on NMR data. Cem Concr Res 88:170–183

    Article  Google Scholar 

  • Lasaga AC (2014) Kinetic theory in the earth sciences. Princeton University Press, Princeton

    Google Scholar 

  • Manzano H, Moeini S, Marinelli F, Van Duin AC, Ulm FJ, Pellenq RJM (2012) Confined water dissociation in microporous defective silicates: mechanism, dipole distribution, and impact on substrate properties. J Am Chem Soc 134(4):2208–2215

    Article  Google Scholar 

  • Masoero E, Del Gado E, Pellenq RJM, Ulm FJ, Yip S (2012) Nanostructure and nanomechanics of cement: polydisperse colloidal packing. Phys Rev Lett 109(15):155503

    Article  ADS  Google Scholar 

  • Masoero E, Del Gado E, Pellenq RJM, Yip S, Ulm FJ (2014a) Nano-scale mechanics of colloidal C–S–H gels. Soft Matter 10:491–499. https://doi.org/10.1039/C3SM51815A

    Article  ADS  Google Scholar 

  • Masoero E, Jennings H, Ulm F, Del Gado E, Manzano H, Pellenq R, Yip S (2014b) Modelling cement at fundamental scales: from atoms to engineering strength and durability. Comput Model Concr Struct 1:139–148

    Google Scholar 

  • Masoero E, Thomas JJ, Jennings HM (2014c) A reaction zone hypothesis for the effects of particle size and water-to-cement ratio on the early hydration kinetics of C3S. J Am Ceram Soc 97(3):967–975

    Article  Google Scholar 

  • Mie G (1903) Zur kinetischen theorie der einatomigen körper. Annalen der Physik 316(8):657–697

    Article  ADS  Google Scholar 

  • Muller AC, Scrivener KL, Gajewicz AM, McDonald PJ (2012) Densification of C–S–H measured by 1h NMR relaxometry. J Phys Chem C 117(1):403–412

    Article  Google Scholar 

  • Nicoleau L, Nonat A (2016) A new view on the kinetics of tricalcium silicate hydration. Cem Concr Res 86:1–11

    Article  Google Scholar 

  • Olivier JG, Muntean M (2014) Trends in global CO2 emissions: 2014 Report. PBL Netherlands environmental assessment agency and institute for environment and sustainability of the European commission’s joint research centre, The Hague

    Google Scholar 

  • Patel R (2016) Lattice Boltzmann method based framework for simulating physico-chemical processes in heterogeneous porous media and its application to cement paste. PhD thesis, Ghent University

    Google Scholar 

  • Plassard C, Lesniewska E, Pochard I, Nonat A (2005) Nanoscale experimental investigation of particle interactions at the origin of the cohesion of cement. Langmuir 21(16):7263–7270

    Article  Google Scholar 

  • Richardson I (2008) The calcium silicate hydrates. Cem Concr Res 38(2):137–158

    Article  Google Scholar 

  • Scherer GW, Zhang J, Thomas JJ (2012) Nucleation and growth models for hydration of cement. Cem Concr Res 42(7):982–993

    Article  Google Scholar 

  • Scrivener KL, John VM, Gartner EM (2016) Eco-efficient cements: potential, economically viable solutions for a low-CO2, cement-based materials industry. UNEP

    Google Scholar 

  • Shvab I, Brochard L, Manzano H, Masoero E (2017) Precipitation mechanisms of mesoporous nanoparticle aggregates: off-lattice, coarse-grained, kinetic simulations. Cryst Growth Des 17(3):1316–1327

    Article  Google Scholar 

  • Tajuelo Rodriguez E, Richardson I, Black L, Boehm-Courjault E, Nonat A, Skibsted J (2015) Composition, silicate anion structure and morphology of calcium silicate hydrates (CSH) synthesised by silica-lime reaction and by controlled hydration of tricalcium silicate (C3S). Adv Appl Ceram 114(7):362–371

    Article  Google Scholar 

  • Taylor HF (1997) Cement chemistry. Thomas Telford, London

    Book  Google Scholar 

  • Thomas JJ (2007) A new approach to modeling the nucleation and growth kinetics of tricalcium silicate hydration. J Am Ceram Soc 90:3282–3288

    Article  Google Scholar 

  • Thomas J, Biernacki J, Bullard J, Bishnoi S, Dolado J, Scherer G, Luttge A (2011) Modeling and simulation of cement hydration kinetics and microstructure development. Cem Concr Res 41:1257–1278

    Article  Google Scholar 

  • Ulm FJ, Coussy O (1996) Strength growth as chemo-plastic hardening in early age concrete. J Eng Mech 122(12):1123–1132

    Article  Google Scholar 

  • Van Driessche AE, Kellermeier M, Benning LG, Gebauer D (2016) New perspectives on mineral nucleation and growth: from solution precursors to solid materials. Springer, Cham

    Google Scholar 

  • Voter AF (2007) Introduction to the kinetic Monte Carlo method. In: Sickafus KE et al (eds) Radiation effects in solids. Springer, Dordrecht, pp 1–23

    Google Scholar 

  • Yu Z, Lau D (2015) Nano-and mesoscale modeling of cement matrix. Nanoscale Res Lett 10(1):173

    Article  ADS  Google Scholar 

  • Zalzale M (2014) Water dynamics in cement paste: insights from lattice Boltzmann modelling, PhD thesis, EPFL Lausanne, Switzerland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Masoero .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Masoero, E. (2018). Mesoscale Mechanisms of Cement Hydration: BNG Model and Particle Simulations. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_149-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_149-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics