Skip to main content

A Statistical Approach of Thermal Transport at Nanoscales: From Solid-State to Biological Applications

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling
  • 237 Accesses

Abstract

This collection of materials has been articulated to illustrate the idea that observing equilibrium short-scale processes and performing statistical measures through correlations contribute a great deal to revealing macroscopic thermal properties of condensed matter. The questions addressed here arise from a change of paradigm as soon as one comes to describe a system response at a scale shorter than the characteristic lengths of its underlying microscopic phenomena. We restrict our analysis here to nanoscale heat transport by conduction or radiation and to a lesser extent in liquid and soft materials. A description of the mechanisms of phonon transmission at solid-state constrictions (or interfaces) is introduced. Infrared absorption in dielectric nano-objects is next discussed as well as a calculation of the absorption spectra in cellular membranes. Finally, the Brownian relaxation of magnetic nanoparticles is revisited in the light of accounting for long-range dipolar interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon, Oxford

    MATH  Google Scholar 

  • Bahia M, Numes J, Altbir D, Vargas P, Knobel M, Bahia M, Numes J, Altbir D, Vargas P, Knobel M (2004) J Mag Mag Mat 281:372–377

    Article  ADS  Google Scholar 

  • Becker B, Schelling PK, Phillpot SR (2006) J Appl Phys 99:123715

    Article  ADS  Google Scholar 

  • Benz R, Frhlich O, Luger P, Montal M, (1975) Biochimica et Boiphysica Acta, 394, 323–334 .

    Article  Google Scholar 

  • Berestovsky G, Gyulkhandanyan M, Ivkov V, Razhin V (1978) J Membrane Biol 43:107–126

    Article  Google Scholar 

  • Berkov DV, Gorn NL (2001) Susceptibility of the disordered system of fine magnetic particles: a Langevin-dynamics study. J Phys Condens Matter 13:9369–9381

    Article  ADS  Google Scholar 

  • Borca-Tasciuc et al. (2000) Superlattices and Microstructure 28:199

    Article  ADS  Google Scholar 

  • Branquinho LC, Carrio MS, Costa AS, Zufelato N, Sousa MH, Miotto R, Ivkov R, Bakuzis AF (2013) Effect of magnetic dipolar interactions on nanoparticle heating efficiency: implications for cancer hyperthermia. Sci Rep 3:2887

    Article  ADS  Google Scholar 

  • Brinis D, Laggoun A, Ledue D, Patte R (2014) Effects of dimensionality and spatial distribution on the magnetic relaxation of interacting ferromagnetic nanoclusters: A Monte Carlo study. J. App. Phys. 115:173906

    Article  ADS  Google Scholar 

  • Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, Merlin R, Phillpot SR (2003) J Appl Phys 93:793–818

    Article  ADS  Google Scholar 

  • Callen HB, Welton TA (1951) Irreversibility and generalized noise. Phys Rev 83:34

    Article  ADS  MathSciNet  Google Scholar 

  • Carey VP, Chen G, Grigoropoulos C, Kaviany M, Majumdar A (2008) Nanoscale and microscale thermophysical engineering 12:1–60

    Article  ADS  Google Scholar 

  • Chalopin Y, Dammak H, Laroche M, Hayoun M, Greffet JJ (2011) Phys Rev B 84:224301

    Article  ADS  Google Scholar 

  • Chalopin Y, Dammak H, Hayoun M, Besbes M, Greffet JJ (2012a) App Phys Lett 100:1–4

    Article  Google Scholar 

  • Chalopin Y, Esfarjani K, Henry H, Volz S, Chen G (2012b) Phys Rev B 85:195302

    Article  ADS  Google Scholar 

  • Chen TS, Alldredge GP, de Wette FW (1972) Phys Rev B 6:15

    Google Scholar 

  • Coffey WT, Kalmykov YP (2012) Thermal fluctuations of magnetic nanoparticles: fifty years after Brown. J App Phys 112:121301

    Article  ADS  Google Scholar 

  • David C, Garcia de Abajo FJ (2011) J Phys Chem C 115:19470–19475

    Article  Google Scholar 

  • Dejardin PM (2011) Magnetic relaxation of a system of superparamagnetic particles weakly coupled by dipole-dipole interactions. J App Phys 110:113921

    Article  ADS  Google Scholar 

  • Denisov SI, Trohidou KN (2001) Fluctuation theory of magnetic relaxation for two-dimensional ensembles of dipolar interacting nanoparticles. Phys Rev B 64:184433

    Article  ADS  Google Scholar 

  • Denisov SI, Lyutyy TV, Trohidou KN (2003) Magnetic relaxation in finite two-dimensional nanoparticle ensembles. Phys Rev B 67:14411

    Article  ADS  Google Scholar 

  • Di Corato R, Espinosa A, Lartigue L, Tharaud M, Chat S, Pellegrino T, Menager C, Gazeau F, Wilhelm C (2014) Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs. Biomaterials 35:6400–6411

    Article  Google Scholar 

  • Engel A, Muller HW, Reimann P, Jung A (2003) Ferrofluids as thermal ratchets. Phys Rev Lett 91:060602

    Article  ADS  Google Scholar 

  • Farrell D, Ding Y, Majetich SA, Sanchez-Hanke C, Kao CC (2004) Structural ordering effects in Fe nanoparticle two- and three-dimensional arrays. J. App. Phys. 95(11):6636–6638

    Article  ADS  Google Scholar 

  • Felderhof BU (2002) Rotational Brownian motion of a pair of linear molecules or dipoles with anisotropic interaction. J Chem Phys 117:3583

    Article  ADS  Google Scholar 

  • Fray SJ, Johnson FA, Quarrington JE, Williams N (1961) J Appl Phys 32:2102

    Article  ADS  Google Scholar 

  • Gao Y, Marconnet A, Panzer M, LeBlanc S, Dogbe S, Ezzahri Y, Shakouri A, Goodson K (2010) J Elec Mat 39:1456–1462

    Article  ADS  Google Scholar 

  • Gaudry JB, Capes L, Langot P, Marcen S, Kollmannsberger M, Lavastre O, Freysz E, Letard JF, Kahn O (2000) Chem Phys Lett 324:321

    Article  ADS  Google Scholar 

  • Greffet J-J, Carminati R, Joulain K, Mulet JP, Mainguy S, Chen Y (2002) Nature 416:61

    Article  ADS  Google Scholar 

  • Grimm M, Jeney S, Franosch T (2011) Brownian motion in a Maxwell fluid. Soft Matter 7:2076

    Article  ADS  Google Scholar 

  • Jimenez RP, Zayas FG, M’Peko JC, Eiras JA (2006) A numerical study of relaxation in a two dimensional dipolar lattice. J Appl Phys 99:64102

    Article  Google Scholar 

  • Jones WE, Fuchs R (1971) Phys Rev B 4:3581

    Article  ADS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  ADS  Google Scholar 

  • Karjiban RA, Shaari NS, Gunasakaran UV, Basri M (2013) J Chem 2013, 1–6

    Article  Google Scholar 

  • Kubo R (1966) Rep Prog Phys 29:255

    Article  ADS  Google Scholar 

  • Kubo P, Toda M, Hashitsume N (1985) Statistical physics II. Springer, Berlin

    Book  Google Scholar 

  • Kupiainen M, Falck E, Ollila S, Niemel P, Gurtovenko A (2005) J Comput theor Nanosci 2:401–413

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1980) Statistical Physics. Mir 5

    Google Scholar 

  • Landauer R (1970) Philos Mag 21:863

    Article  ADS  Google Scholar 

  • Landi GT (2014) Role of dipolar interaction in magnetic hyperthermia. Phys Rev B 89:14403

    Article  ADS  Google Scholar 

  • Landry ES, McGaughey AJH (2010) J App Phys 107:013521

    Article  ADS  Google Scholar 

  • Lee SM, Cahill DG, Venkatasubramanian R (1997) Appl Phys Lett 70(22):2957–9

    Article  ADS  Google Scholar 

  • Lee C, Bain CD (2005) Raman spectra of planar supported lipid bilayers. Biochim Biophys Acta 1711:59–71, p. 82, 87, 89

    Article  Google Scholar 

  • Lucas AA (1968) J Chem Phys 48:3156

    Article  ADS  Google Scholar 

  • MacIsaac AB, Whitehead JP, De’Bell K, Poole PH (1996) Phase diagram for a magnetic thin film with dipolar interactions and magnetic surface anisotropy. Phys. Rev. Lett. 77 :739–742

    Article  ADS  Google Scholar 

  • Matsui M (1989) J Chem Phys 91:489

    Article  ADS  Google Scholar 

  • McMahon JM, Stephen KG, Schatz GC (2009) Rev Lett 103:097403. J Phys Chem C 115:19470 (2011)

    Article  Google Scholar 

  • Mingo N, Yang L (2003) Phys Rev B 68:245406

    Article  ADS  Google Scholar 

  • Montal M, Mueller P (1972) Proc Nat Acad Sci 69:3561–3566

    Article  ADS  Google Scholar 

  • Morup S, Tronc E (1994) Superparamagnetic relaxation of weakly interacting particles. Phys Rev Lett 72:3278–3281

    Article  ADS  Google Scholar 

  • Nie S, Emory SR (1997) Science 275:1102

    Article  Google Scholar 

  • Ong ZY, Pop E (2010) Phys Rev B 81:155408

    Article  ADS  Google Scholar 

  • Palik ED, Bennett JM (1991) Handbook of optical constants of solids, vol II. Academic Press, New York

    Google Scholar 

  • Panzer MP, Goodson KE (2008) J Appl Phys 103:094301-01

    Article  ADS  Google Scholar 

  • Pottier N (I999) Nonequilibrium statistical physics. Hardback, 9780199556885

    Google Scholar 

  • Ritov S.M (1959) Theory of Electric Fluctuations and Thermal Radiation (Air Force Cambridge Research Center, Bedford, Mass.,), AFCRC-TR-59-162

    Google Scholar 

  • Ruta S, Chantrell R, Hovorka O (2015) Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles. Sci Rep 5:9090

    Article  ADS  Google Scholar 

  • Scarel G, Hyde GK, Hojo D, Parsons GN (2008) J Appl Phys 104:094314

    Article  ADS  Google Scholar 

  • Schelling PK, Phillpot SR, Keblinski P (2002) Appl Phys Lett 80:2484

    Article  ADS  Google Scholar 

  • Shafiei F, Wu C, Wu Y, Khanikaev AB, Putzke P, Singh A, Li X, Shvets G (2013) Nat Photon 7:367

    Article  ADS  Google Scholar 

  • Stariolo DA, Billoni OV (2008) Dipolar interactions and thermal stability of two-dimensional nanoparticle arrays. Phys D Appl Phys 41:20

    Article  Google Scholar 

  • Stillinger H, Weber TA (1985) Phys Rev B 31:5262

    Article  ADS  Google Scholar 

  • Sugano R, Matsushita K, Kuroda A, Tomita Y, Takayama H. Magnetic properties of 2-Dimensional dipolar squares: boundary geometry dependence. J Phys Soc Jpn 76:44705 (2007)

    Article  Google Scholar 

  • Tan RP, Carrey J, Respaud M (2014) Magnetic hyperthermia properties of nanoparticles inside lysosomes using kinetic Monte Carlo simulations: influence of key parameters and dipolar interactions, and evidence for strong spatial variation of heating power. Phys Rev B 90:214421

    Article  ADS  Google Scholar 

  • Tong SY, Maradudin AA (1969) Phys Rev 181:1318

    Article  ADS  Google Scholar 

  • Toyama S, Nakamura A, Toda F (1991) Biophys J 59:939–944

    Article  Google Scholar 

  • Vermeer SL, de Groot BL, Rat V, Milon A, Czaplicki J (2007) Eur Biophys J 36:919–931

    Article  Google Scholar 

  • Voisin C, Del Fatti N, Christofilos D, Vallée F (2001) J Phys Chem B 105:2264

    Article  Google Scholar 

  • Zhang W, Mingo N, Fisher TS (2007a) Phys Rev B 76:195429

    Article  ADS  Google Scholar 

  • Zhang W, Mingo N, Fisher TS (2007b) Numer Heat Transfer 51:333

    Article  ADS  Google Scholar 

  • Zhang W, Mingo N, Fisher TS (2007c) J Heat Transfer 129:483

    Article  Google Scholar 

  • Zhang W, Fisher T, Mingo N (2007d) Trans ASME J Heat Transfer 129:483

    Article  Google Scholar 

  • Zhang L, Keblinski P, Wang JS, Li B (2011) Phys Rev B 83:064303

    Article  ADS  Google Scholar 

  • Zhou HX, Bagshi B (1992) Solvation dynamics in a Brownian dipole lattice: a comparison between theory and computer simulation. J Chem Phys 97:3610

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. G. Chen (MIT), Prof. K. Esfarjani (RPI), Dr. N. Mingo (CEA, LITEN), and Dr. S. Volz (CentraleSupelec/CNRS) for their contributions to phonon transport at interfaces; Prof. H. Dammak (CentraleSupelec) and Dr. M. Hayoun (Ecole Polytechnique) who have been involved in the development of IR-absorption calculations; Dr. J. Soussi for his pioneer work on lipid bilayers; and Dr. F. Gazeau (MSC, Univ. Paris-Diderot), Dr. M. Devaud (MSC, Univ. Paris-Diderot), and Prof. J. C. Bacri (MSC, Univ. Paris-Diderot) for their contributions to the equilibrium formulation of Brownian relaxation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Chalopin .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chalopin, Y. (2018). A Statistical Approach of Thermal Transport at Nanoscales: From Solid-State to Biological Applications. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling. Springer, Cham. https://doi.org/10.1007/978-3-319-50257-1_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50257-1_13-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50257-1

  • Online ISBN: 978-3-319-50257-1

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics