Skip to main content

Materials for Terahertz Engineering

  • Chapter
  • First Online:
Springer Handbook of Electronic and Photonic Materials

Part of the book series: Springer Handbooks ((SHB))

Abstract

Metals reflect, plastics transmit, and water absorbs terahertz-frequency electromagnetic radiation. Such diverse responses open up a vast range of applications for terahertz materials spanning art, science, engineering, and medicine. The three main components of terahertz devices are sources, detectors, and the intervening optics. Sources include solid-state emitters, typically involving in their operation either the lattice (nonlinear optics) or the charge carriers (transient dipoles). Quantum cascade lasers, built of multiple semiconductor layers, represent a rapidly developing solid-state terahertz source. Detectors typically depend on either the crystal lattice (electro-optical detection) or the charge carrier reservoir (electronic detection) being sensitive to terahertz radiation. Terahertz components encompass metal-coated mirrors, plastic (machined, molded, or three-dimensional (3-D) printed) lenses, and waveguides, filters, and polarizers of many different materials and designs. An emerging class of components are the terahertz metamaterials .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.A. Lewis: Let’s talk terahertz!, Am. J. Phys. 79, 341 (2011)

    Google Scholar 

  2. S.M. Stewart: Terahertzing visible light, Am. J. Phys. 79, 797 (2011)

    Google Scholar 

  3. K. Sakai: Private communication (2014)

    Google Scholar 

  4. K. Sakai: Pioneering studies and cutting-edge approaches in the terahertz-waves region, Proc. 34th Int. Conf. Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2009 (2009)

    Google Scholar 

  5. R.A. Lewis: A review of terahertz sources, J. Phys. D: Appl. Phys. 47, 374001 (2014)

    Google Scholar 

  6. P.H. Siegel: Terahertz technology, IEEE Trans. Microw. Theory Tech. 50, 910 (2002)

    Google Scholar 

  7. B. Ferguson, X.C. Zhang: Materials for terahertz science and technology, Nat. Mat. 1, 26 (2002)

    CAS  Google Scholar 

  8. M. Tonouchi: Cutting-edge terahertz technology, Nat. Photonics 1, 97 (2007)

    CAS  Google Scholar 

  9. M.C. Beard, G.M. Turner, C.A. Schmuttenmaer: Terahertz spectroscopy, J. Phys. Chem. B 106, 7146 (2002)

    CAS  Google Scholar 

  10. W.L. Chan, J. Deibel, D.M. Mittleman: Imaging with terahertz radiation, Rep. Prog. Phys. 70, 1325 (2007)

    Google Scholar 

  11. S. Wang, X.-C. Zhang: Pulsed terahertz tomography, J. Phys. D: Appl. Phys. 37, R1 (2004)

    CAS  Google Scholar 

  12. E. Pickwell, V.P. Wallace: Biomedical applications of terahertz technology, J. Phys. D: Appl. Phys. 39, R301 (2006)

    CAS  Google Scholar 

  13. H.-J. Song, T. Nagatsuma: Present and future of terahertz communications, IEEE Trans. Terahertz Sci. Technol. 1, 256 (2011)

    Google Scholar 

  14. D. Mittleman (Ed.): Sensing with Terahertz Radiation (Springer, Berlin 2003)

    Google Scholar 

  15. K. Sakai (Ed.): Terahertz Optoelectronics (Springer, Berlin 2005)

    Google Scholar 

  16. S.D. Ganichev, W. Prettl: Intense Terahertz Excitation of Semiconductors (Oxford Science Publications, Oxford 2006)

    Google Scholar 

  17. S. Dexheimer (Ed.): Terahertz Spectroscopy, Principles and Applications (CRC Press, Boca Raton 2008)

    Google Scholar 

  18. Y.S. Lee: Principles of Terahertz Science and Technology (Springer, New York 2009)

    Google Scholar 

  19. X.C. Zhang, J. Xu: Introduction to THz Wave Photonics (Springer, New York 2010)

    Google Scholar 

  20. E. Brundermann, H.-W. Hübers, M.F. Kimmit: Terahertz Techniques (Springer, Heidelberg 2012)

    Google Scholar 

  21. R.A. Lewis: Terahertz Physics (Cambridge Univ. Press, Cambridge 2012)

    Google Scholar 

  22. C. Thacker, A. Cooray, J. Smidt, F. De Bernardis, K. Mitchell-Wynne, A. Amblard, R. Auld, M. Baes, D.L. Clements, A. Dariush, G. De Zotti, L. Dunne, S. Eales, R. Hopwood, C. Hoyos, E. Ibar, M. Jarvis, S. Maddox, M.J. Michałowski, E. Pascale, D. Scott, S. Serjeant, M.W.L. Smith, E. Valiante, P. van der Werf: H-ATLAS: The cosmic abundance of dust from the far-infrared background power spectrum, Astrophys. J. 768, 58 (2013)

    Google Scholar 

  23. V.M. Zolotarev, R.K. Mamedov, A.N. Bekhterev, B.Z. Volchek: Spectral emissivity of a globar lamp in the 2–50-μm region, J. Opt. Technol. 74, 378 (2007)

    CAS  Google Scholar 

  24. R.A. Friedel, A.G. Sharkey Jr.: Comparison of glower and Globar sources for infra-red spectrometry, Rev. Sci. Instrum. 18, 928 (1947)

    CAS  Google Scholar 

  25. R.A. Friedel, A.G. Sharkey Jr.: Erratum: Comparison of glower and Globar sources for infra-red spectrometry, Rev. Sci. Instrum. 19, 180 (1948)

    Google Scholar 

  26. K. Charrada, G. Zissis, M. Aubes: Two-temperature, two-dimensional fluid modelling of mercury plasma in high-pressure lamps, J. Phys. D: Appl. Phys. 29, 2432 (1996)

    CAS  Google Scholar 

  27. J.H. Booske, R.J. Dobbs, C.D. Joye, C.L. Kory, G.R. Neil, G.S. Park, J. Park, R.J. Temkin: Vacuum electronic high power terahertz sources, IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011)

    CAS  Google Scholar 

  28. M. Mineo, C. Paoloni: Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications, IEEE Trans. Electron Devices 57, 1481 (2010)

    CAS  Google Scholar 

  29. X. Xu, Y. Wei, F. Shen, H. Yin, J. Xu, Y. Gong, W. Wang: A watt-class 1-THz backward-wave oscillator based on sine waveguide, Phys. Plasmas 19, 013113 (2012)

    Google Scholar 

  30. W. He, C.R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, A.W. Cross: High power wideband gyrotron backward wave oscillator operating towards the terahertz region, Phys. Rev. Lett. 110, 165101 (2013)

    CAS  Google Scholar 

  31. Y.M. Shin, G.S. Park, G.P. Scheitrum, G. Caryotakis: Circuit analysis of an extended interaction klystron, J. Korean Phys. Soc. 44, 1239 (2004)

    CAS  Google Scholar 

  32. S. Bhattacharjee, J.H. Booske, C.L. Kory, D.W. van der Weide, S. Limbach, S. Gallagher, J.D. Welter, M.R. Lopez, R.M. Gilgenbach, R.L. Ives, M.E. Read, R. Divan, D.C. Mancini: Folded waveguide traveling-wave tube sources for terahertz radiation, IEEE Trans. Plasma Sci. 32, 1002 (2004)

    Google Scholar 

  33. V.L. Bratman, Y.K. Kalynov, V.N. Manuilov: Large-orbit gyrotron operation in the terahertz frequency range, Phys. Rev. Lett. 102, 245101 (2009)

    CAS  Google Scholar 

  34. T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, L. Agasu, H. Mori, S. Kobayashi: Development of terahertz FU CW Gyrotron series for DNP, Appl. Magn. Reson. 34, 265 (2008)

    CAS  Google Scholar 

  35. B.A. Knyazev, G.N. Kulipanov, N.A. Vinokurov: Novosibirsk terahertz free electron laser: Instrumentation development and experimental achievements, Meas. Sci. Technol. 21, 054017 (2010)

    Google Scholar 

  36. M.A. Dem’yanenko, D.G. Esaev, B.A. Knyazev, G.N. Kulipanov, N.A. Vinokurov: Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser, Appl. Phys. Lett. 92, 131116 (2008)

    Google Scholar 

  37. J.M. Byrd, W.P. Leemans, A. Loftsdottir, B. Marcelis, M.C. Martin, W.R. McKinney, F. Sannibale, T. Scarvie, C. Steier: Observation of broadband self-amplified spontaneous coherent terahertz synchrotron radiation in a storage ring, Phys. Rev. Lett. 89, 224801 (2002)

    CAS  Google Scholar 

  38. S. Pérez, T. González, D. Pardo, J. Mateos: Terahertz Gunn-like oscillations in InGaAs/InAlAs planar diodes, J. Appl. Phys. 103, 094516 (2008)

    Google Scholar 

  39. J. Lusakowski, W. Knap, N. Dyakonova, L. Varani, J. Mateos, T. Gonzalez, Y. Roelens, S. Bollaert, A. Cappy, K. Karpierz: Voltage tuneable terahertz emission from a ballistic nanometer InGaAs/InAlAs transistor, J. Appl. Phys. 97, 064307 (2005)

    Google Scholar 

  40. A. Maestrini, J.S. Ward, J.J. Gill, C. Lee, B. Thomas, R.H. Lin, G. Chattopadhyay, I. Mehdi: A frequency-multiplied source with more than 1 mW of power across the 840–900-GHz band, IEEE Trans. Microw. Theory Tech. 58, 1925 (2010)

    Google Scholar 

  41. L. Ozyuzer, A.E. Koshelev, C. Kurter, N. Gopalsami, Q. Li, M. Tachiki, K. Kadowaki, T. Yamamoto, H. Minami, H. Yamaguchi, T. Tachiki, K.E. Gray, W.-K. Kwok, U. Welp: Emission of coherent THz radiation from superconductors, Science 318, 1291 (2007)

    CAS  Google Scholar 

  42. G. Dodel: On the history of far-infrared (FIR) gas lasers: Thirty-five years of research and application, Infrared Phys. Technol. 40, 127 (1999)

    CAS  Google Scholar 

  43. H.W. Hübers, S.G. Pavlov, V.N. Shastin: Terahertz lasers based on germanium and silicon, Semicond. Sci. Technol. 20, S211 (2005)

    Google Scholar 

  44. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H.E. Beere, D.A. Ritchie, S.P. Khanna, E.H. Linfield, A.G. Davies: Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions, Nature 457, 174 (2009)

    CAS  Google Scholar 

  45. R. Köhler, A. Tredicucci, F. Beltram, H.E. Beere, E.H. Linfield, A.G. Davies, D.A. Ritchie, R.C. Iotti, F. Rossi: Terahertz semiconductor-heterostructure laser, Nature 417, 156 (2002)

    Google Scholar 

  46. B.S. Williams: Terahertz quantum-cascade lasers, Nat. Photonics 1, 517 (2007)

    CAS  Google Scholar 

  47. K.A. McIntosh, E.R. Brown, K.B. Nichols, O.B. McMahon, W.F. DiNatale, T.M. Lyszczarz: Terahertz photomixing with diode lasers in low-temperature-grown GaAs, Appl. Phys. Lett. 67, 3844 (1995)

    CAS  Google Scholar 

  48. X.L. Wu, S.J. Xiong, Z. Liu, J. Chen, J.C. Shen, T.H. Li, P.H. Wu, P.K. Chu: Green light stimulates terahertz emission from mesocrystal microspheres, Nat. Nanotechnol. 6, 103 (2011)

    CAS  Google Scholar 

  49. D.H. Auston: Picosecond optoelectronic switching and gating in silicon, Appl. Phys. Lett. 26, 101 (1975)

    CAS  Google Scholar 

  50. Y.C. Shen, P.C. Upadhya, E.H. Linfield, H.E. Beere, A.G. Davies: Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters, Appl. Phys. Lett. 83, 3117 (2003)

    CAS  Google Scholar 

  51. K.Y. Kim, J.H. Glownia, A.J. Taylor, G. Rodriguez: Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions, Nat. Photon. 2, 605 (2008)

    CAS  Google Scholar 

  52. M. Kress, T. Löffler, S. Eden, M. Thomson, H.G. Roskos: Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves, Opt. Lett. 29, 1120 (2004)

    CAS  Google Scholar 

  53. E. Beaurepaire, G.M. Turner, S.M. Harrel, M.C. Beard, J.Y. Bigot, C.A. Schmuttenmaer: Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses, Appl. Phys. Lett. 84, 3465 (2004)

    CAS  Google Scholar 

  54. K. Kawase, M. Sato, T. Taniuchi, H. Ito: Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler, Appl. Phys. Lett. 68, 2483 (1996)

    CAS  Google Scholar 

  55. K. Radhanpura, S. Hargreaves, R.A. Lewis, L. Sirbu, I.M. Tiginyanu: Heavy noble gas (Kr, Xe) irradiated (111) InP nanoporous honeycomb membranes with enhanced ultrafast all-optical terahertz emission, Appl. Phys. Lett. 97, 181921 (2010)

    Google Scholar 

  56. S. Hargreaves, K. Radhanpura, R.A. Lewis: Generation of terahertz radiation by bulk and surface optical rectification from crystal planes of arbitrary orientation, Phys. Rev. B 80, 195323 (2009)

    Google Scholar 

  57. J.D. Rowley, J.K. Wahlstrand, K.T. Zawilski, P.G. Schunemann, N.C. Giles, A.D. Bristow: Terahertz generation by optical rectification in uniaxial birefringent crystals, Opt. Express 20, 16968 (2012)

    CAS  Google Scholar 

  58. M. Reid, I.V. Cravetchi, R. Fedosejevs: Terahertz radiation and second-harmonic generation from InAs: Bulk versus surface electric-field-induced contributions, Phys. Rev. B 72, 035201 (2005)

    Google Scholar 

  59. A. Urbanowicz, A. Krotkus, R. Adomavičius, V.L. Malevich: Terahertz emission from femtosecond laser excited Ge surfaces due to the electrical field-induced optical rectification, Physica B: Cond. Mat. 398, 98 (2007)

    CAS  Google Scholar 

  60. J.N. Heyman, N. Coates, A. Reinhardt, G. Strasser: Diffusion and drift in terahertz emission at GaAs surfaces, Appl. Phys. Lett. 83, 5476 (2003)

    CAS  Google Scholar 

  61. S. Hargreaves, R.A. Lewis: Single-cycle azimuthal angle dependence of terahertz radiation from (100) n-type InP, Appl. Phys. Lett. 93, 242101 (2008)

    Google Scholar 

  62. H. Dember: A photoelectrical-motive energy in copper-oxide crystals, Phys. Z. 32, 554 (1931)

    CAS  Google Scholar 

  63. H. Dember: A crystal photocell, Phys. Z. 32, 856 (1931)

    CAS  Google Scholar 

  64. H. Dember: Forward motion of electrons induced by light, Phys. Z. 32, 207 (1931)

    Google Scholar 

  65. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M.B. Johnston, M. Fischer, J. Faist, T. Dekorsy: Terahertz emission from lateral photo-Dember currents, Opt. Express 18, 4939 (2010)

    CAS  Google Scholar 

  66. G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, T. Dekorsy: Photo-Dember terahertz emitter excited with an Er:Fiber laser, Appl. Phys. Lett. 98, 021114 (2011)

    Google Scholar 

  67. J. Lloyd-Hughes, S.K.E. Merchant, L. Fu, H.H. Tan, C. Jagadish, E. Castro-Camus, M.B. Johnston: Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs, Appl. Phys. Lett. 89, 232102 (2006)

    Google Scholar 

  68. J. Horvat, R.A. Lewis: Peeling adhesive tape emits electromagnetic radiation at terahertz frequencies, Opt. Lett. 34, 2195 (2009)

    CAS  Google Scholar 

  69. D.L. Cortie, R.A. Lewis: Terahertz surfoluminescence, Surf. Sci. 606, 1573 (2012)

    CAS  Google Scholar 

  70. L.C. Roess, E.N. Dacus: The design and construction of rapid-response thermocouples for use as radiation detectors in infra-red spectrographs, Rev. Sci. Instrum. 16, 164 (1945)

    CAS  Google Scholar 

  71. W.J.H. Moll: A thermopile for measuring radiation, Proc. Phys. Soc. (London) 35, 257 (1922)

    Google Scholar 

  72. R.W. Whatmore: Pyroelectric devices and materials, Rep. Prog. Phys. 49, 1335 (1986)

    CAS  Google Scholar 

  73. F. Alves, D. Grbovic, B. Kearney, N.V. Lavrik, G. Karunasiri: Bi-material terahertz sensors using metamaterial structures, Opt. Express 21, 13256 (2013)

    CAS  Google Scholar 

  74. F. Alves, D. Grbovic, B. Kearney, G. Karunasiri: Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber, Opt. Lett. 37, 1886 (2012)

    Google Scholar 

  75. P.L. Richards: Bolometers for infrared and millimeter waves, J. Appl. Phys. 76, 1 (1994)

    CAS  Google Scholar 

  76. J.R. Gao, J.N. Hovenier, Z.Q. Yang, J.J.A. Baselmans, A. Baryshev, M. Hajenius, T.M. Klapwijk, A.J.L. Adam, T.O. Klaassen, B.S. Williams, S. Kumar, Q. Hu, J.L. Reno: Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer, Appl. Phys. Lett. 86, 1 (2005)

    Google Scholar 

  77. J. Yang, S. Ruan, M. Zhang: Real-time, continuous-wave terahertz imaging by a pyroelectric camera, Chin. Opt. Lett. 6, 29 (2008)

    CAS  Google Scholar 

  78. Q. Wu, X.-C. Zhang: Design and characterization of traveling-wave electrooptic terahertz sensors, IEEE J. Sel. Top. Quantum Electron. 2, 693 (1996)

    CAS  Google Scholar 

  79. J. Song, G. Aizin, Y. Kawano, K. Ishibashi, N. Aoki, Y. Ochiai, J.L. Reno, J.P. Bird: Evaluating the performance of quantum point contacts as nanoscale terahertz sensors, Opt. Express 18, 4609 (2010)

    CAS  Google Scholar 

  80. S. Pelling, R. Davis, L. Kulik, A. Tzalenchuk, S. Kubatkin, T. Ueda, S. Komiyama, V.N. Antonov: Point contact readout for a quantum dot terahertz sensor, Appl. Phys. Lett. 93, 073501 (2008)

    Google Scholar 

  81. D. Seliuta, I. Kašalynas, V. Tamošiūnas, S. Balakauskas, Z. Martunas, S. Ašmontas, G. Valušis, A. Lisauskas, H.G. Roskos, K. Köhler: Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature, Electron. Lett. 42, 825 (2006)

    CAS  Google Scholar 

  82. A.K. Huhn, G. Spickermann, A. Ihring, U. Schinkel, H.-G. Meyer, P. Haring Bolívar: Uncooled antenna-coupled terahertz detectors with  22 μs response time based on BiSb/Sb thermocouples, Appl. Phys. Lett. 102, 121102 (2013)

    Google Scholar 

  83. N. Chong, T.A.S. Srinivas, H. Ahmed: Performance of GaAs microbridge thermocouple infrared detectors, J. Microelectromech. Sys. 6, 136 (1997)

    CAS  Google Scholar 

  84. V. Milanovic, M. Gaitan, M.E. Zaghloul: Micromachined thermocouple microwave detector by commercial CMOS fabrication, IEEE Trans. Microw. Theory Tech. 46, 550 (1998)

    Google Scholar 

  85. W.W. Coblentz: A thermopile of bismuth alloy, Phys. Rev. 3, 59 (1914)

    Google Scholar 

  86. F. Völklein, A. Wiegand, V. Baier: High-sensitivity radiation thermopiles made of BiSbTe films, Sens. Act. A 29, 87 (1991)

    Google Scholar 

  87. S. Ben Mbarek, S. Euphrasie, T. Baron, L. Thiery, P. Vairac, D. Briand, J.-P. Guillet, L. Chusseau: Room temperature Si-Ti thermopile THz sensor, Microsyst. Technol. 21, 1627 (2014)

    Google Scholar 

  88. A. Graf, M. Arndt, M. Sauer, G. Gerlach: Review of micromachined thermopiles for infrared detection, Meas. Sci. Technol. 18, R59 (2007)

    CAS  Google Scholar 

  89. A.D. Oliver, K.D. Wise: 1024-Element bulk-micromachined thermopile infrared imaging array, Sens. Actuators A: Phys. 73, 222 (1999)

    CAS  Google Scholar 

  90. P. Muralt: Micromachined infrared detectors based on pyroelectric thin films, Rep. Prog. Phys. 64, 1339 (2001)

    CAS  Google Scholar 

  91. S.-H. Ding, Q. Li, Y.-D. Li, Q. Wang: Continuous-wave terahertz digital holography by use of a pyroelectric array camera, Opt. Lett. 36, 1993 (2011)

    Google Scholar 

  92. G.K.T. Conn: A thermocouple-bolometer detector, Trans. Faraday Soc. 41, 192 (1945)

    Google Scholar 

  93. J.C. Mather: Bolometers: Ultimate sensitivity, optimization, and amplifier coupling, Appl. Opt. 23, 584 (1984)

    CAS  Google Scholar 

  94. S. Sedky, P. Fiorini, K. Baert, L. Hermans, R. Mertens: Characterization and optimization of infrared poly SiGe bolometers, IEEE Trans. Electron Devices 46, 675 (1999)

    CAS  Google Scholar 

  95. P.D. Mauskopf, J.J. Bock, H. Del Castillo, W.L. Holzapfel, A.E. Lange: Composite infrared bolometers with Si3N4 micromesh absorbers, Appl. Opt. 36, 765 (1997)

    CAS  Google Scholar 

  96. S.-F. Lee, J.M. Gildemeister, W. Holmes, A.T. Lee, P.L. Richards: Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK, Appl. Opt. 37, 3391 (1998)

    CAS  Google Scholar 

  97. H.B. Ye, Y.H. Zhang, W.Z. Shen: Carrier transport and optical properties in GaAs far-infrared/terahertz mirror structures, Thin Solid Films 514, 310 (2006)

    CAS  Google Scholar 

  98. N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, D. Mittleman: Omnidirectional terahertz mirrors: A key element for future terahertz communication systems, Appl. Phys. Lett. 88, 202905 (2006)

    Google Scholar 

  99. M. Tecimer, K. Holldack, L.R. Elias: Dynamically tunable mirrors for THz free electron laser applications, Phys. Rev. ST Accel. Beams 13, 030703 (2010)

    Google Scholar 

  100. B. Scherger, M. Scheller, C. Jansen, M. Koch, K. Wiesauer: Terahertz lenses made by compression molding of micropowders, Appl. Opt. 50, 2256 (2011)

    Google Scholar 

  101. B. Scherger, C. Jördens, M. Koch: Variable-focus terahertz lens, Opt. Express 19, 4528 (2011)

    Google Scholar 

  102. H.D. Hristov, J.M. Rodriguez, W. Grote: The grooved-dielectric Fresnel zone plate: An effective terahertz lens and antenna, Microw. Opt. Technol. Lett. 54, 1343 (2012)

    Google Scholar 

  103. X.-Y. Jiang, J.-S. Ye, J.-W. He, X.-K. Wang, D. Hu, S.-F. Feng, Q. Kan, Y. Zhang: An ultrathin terahertz lens with axial long focal depth based on metasurfaces, Opt. Express 21, 30030 (2013)

    Google Scholar 

  104. A. Siemion, A. Siemion, M. Makowski, J. Suszek, J. Bomba, A. Czerwiński, F. Garet, J.-L. Coutaz, M. Sypek: Diffractive paper lens for terahertz optics, Opt. Lett. 37, 4320 (2012)

    Google Scholar 

  105. L.J. Cheng, L. Liu: Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components, Opt. Express 21, 28657 (2013)

    Google Scholar 

  106. H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla: A metamaterial absorber for the terahertz regime: Design, fabrication and characterization, Opt. Express 16, 7181 (2008)

    Google Scholar 

  107. H.-T. Chen, W.J. Padilla, M.J. Cich, A.K. Azad, R.D. Averitt, A.J. Taylor: A metamaterial solid-state terahertz phase modulator, Nat. Photonics 3, 148 (2009)

    CAS  Google Scholar 

  108. H.-T. Chen, W.J. Padilla, J.M.O. Zide, A.C. Gossard, A.J. Taylor, R.D. Averitt: Active terahertz metamaterial devices, Nature 444, 597 (2006)

    CAS  Google Scholar 

  109. W.J. Padilla, A.J. Taylor, C. Highstrete, M. Lee, R.D. Averitt: Dynamical electric and magnetic metamaterial response at terahertz frequencies, Phys. Rev. Lett. 96, 107401 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

K. Sakai is thanked for provision of the diagram on which Fig. 55.4is based.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lewis, R. (2017). Materials for Terahertz Engineering. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-48933-9_55

Download citation

Publish with us

Policies and ethics