Skip to main content

Influence of Heat Input on Friction Stir Welding for the Ods Steel MA956

  • Chapter
Friction Stir Welding and Processing VII

Abstract

The oxide dispersion strengthened steel MA956 was friction stir welded using eight different rotational speed/translational speed combinations using a polycrystalline cubic boron nitride tool. Weld parameter conditions with high thermal input produced defect-free, full penetration welds. Electron backscatter diffraction showed a significant increase in grain size in the stir zone, a body centered cubic torsional texture in the stir zone, and a sharp transition in grain size across the thermo-mechanically affected zone. Micro-indentation results showed an asymmetric reduction in hardness across the transverse section of the weld that was sensitive to the heat input. This change in hardness is explained by the increase in grain size and may be described using a Hall-Petch type relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E. E. Bloom, S. J. Zinkle, and F. W. Wiffen, “Materials to deliver the promise of fusion power — progress and challenges,” Journal of Nuclear Materials, vol. 329, pp. 12–19, Aug 1 2004.

    Article  Google Scholar 

  2. S. Ukai, T. Nishida, T. Okuda, and T. Yoshitake, “Development of oxide dispersion strengthened steels for FBR core application, (II) — Morphology improvement by martensite transformation,” Journal of Nuclear Science and Technology, vol. 35, pp. 294–300, Apr 1998.

    Article  Google Scholar 

  3. M. G. McKimpson and D. Odonnell, “JOINING ODS MATERIALS FOR HIGH-TEMPERATURE APPLICATIONS,” Jom-Journal of the Minerals Metals & Materials Society, vol. 46, pp. 49–51, Jul 1994.

    Article  Google Scholar 

  4. V. G. Krishnardula, N. I. Sofyan, W. F. Gale, and J. W. Fergus, “Joining of ferritic oxide dispersion strengthened alloys,” Transactions of the Indian Institute of Metals, vol. 59, pp. 199–203, Apr 2006.

    Google Scholar 

  5. S. Noh, R. Kasada, A. Kimura, S. H. C. Park, and S. Hirano, “Microstructure and mechanical properties of friction stir processed ODS ferritic steels,” Journal of Nuclear Materials, vol. 417, pp. 245–248, Oct 1 2011.

    Article  Google Scholar 

  6. F. Legendre, S. Poissonnet, P. Bonnaillie, L. Boulanger, and L. Forest, “Some microstructural characterisations in a friction stir welded oxide dispersion strengthened ferritic steel alloy,” Journal of Nuclear Materials, vol. 386–88, pp. 537–539, Apr 30 2009.

    Article  Google Scholar 

  7. A. Etienne, N. J. Cunningham, Y. Wu, and G. R. Odette, “Effects of friction stir welding and post-weld annealing on nanostructured ferritic alloy,” Materials Science and Technology, vol. 27, pp. 724–728, Apr 2011.

    Article  Google Scholar 

  8. W. Han, S. Ukai, F. Wan, Y. Sato, B. Leng, H. Numata, N. Oono, S. Hayashi, Q. Tang, and Y. Sugino, “Hardness and Micro-Texture in Friction Stir Welds of a Nanostructured Oxide Dispersion Strengthened Ferritic Steel,” Materials Transactions, vol. 53, pp. 390–394, Feb 2012.

    Article  Google Scholar 

  9. M. West, B. Jahsthi, P. Hosemann, and V. Sodesetti, “Friction stir welding of oxide dispersion strengthened alloy MA956,” in Friction Stir Welding and Processing VI, TMS, Warrendale, PA, 2011, pp. 33–40.

    Chapter  Google Scholar 

  10. J. Wang, W. Yuan, R. S. Mishra, and I. Charit, “Microstructure and mechanical properties of friction stir welded oxide dispersion strengthened alloy,” Journal of Nuclear Materials, vol. 432, pp. 274–280, 2013.

    Article  Google Scholar 

  11. W. M. Thomas, E. D. Ncholas, J. C. Needham, M. G. Murch, P. Templesmith, and C. J. Dawes, “G. B. Patent Application No. 9125978.8,” 1991.

    Google Scholar 

  12. R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Materials Science EngineeringR-Reports, vol. 50, pp. 1–78, Aug 31 2005.

    Article  Google Scholar 

  13. R. Nandan, T. DebRoy, and H. K. D. H. Bhadeshia, “Recent advances in friction-stir welding — Process, weldment structure and properties,” Progress in Materials Science, vol. 53, pp. 980–1023, Aug 2008.

    Article  Google Scholar 

  14. U. F. Kocks, C. N. Tome, and H. R. Wenk, Texture and Anisotropy: Preferred Orientation in Polycrystals and their Effect on Materials Properties: Cambridge Univesity press, 1998.

    Google Scholar 

  15. W. T. Han, F. R. Wan, B. Leng, S. Ukai, Q. X. Tang, S. Hayashi, J. C. He, and Y. Sugino, “Grain characteristic and texture evolution in friction stir welds of nanostructured oxide dispersion strengthened ferritic steel,” Science and Technology of Welding and Joining, vol. 16, pp. 690–696, Nov 2011.

    Article  Google Scholar 

  16. S. K. Chimbli, D. J. Medlin, and W. J. Arbegast, Minimizing lack of consolidation defects in friction stir welds, 2007.

    Google Scholar 

  17. P. Biswas, D. A. Kumar, and N. R. Mandai, “Friction stir welding of aluminum alloy with varying tool geometry and process parameters,” Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, vol. 226, pp. 641–648, Apr 2012.

    Article  Google Scholar 

  18. R. Nandan, G. G. Roy, T. J. Lienert, and T. DebRoy, “Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel,” Science and Technology of Welding and Joining, vol. 11, pp. 526–537, Sep 2006.

    Article  Google Scholar 

  19. R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. J. Jensen, M. E. Kassner, W. E. King, T. R. McNelley, H. J. McQueen, and A. D. Rollett, “Current issues in recrystallization: a review,” Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 238, pp. 219–274, Nov 15 1997.

    Article  Google Scholar 

  20. M. F. Hupalo, M. Terada, A. M. Kliauga, and A. F. Padilha, “Microstructural characterization of INCOLOY alloy MA 956,” Materialwissenschaft Und Werkstofftechnik, vol. 34, pp. 505–508, May 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Brewer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Baker, B.W. et al. (2013). Influence of Heat Input on Friction Stir Welding for the Ods Steel MA956. In: Mishra, R., Mahoney, M.W., Sato, Y., Hovanski, Y., Verma, R. (eds) Friction Stir Welding and Processing VII. Springer, Cham. https://doi.org/10.1007/978-3-319-48108-1_14

Download citation

Publish with us

Policies and ethics