Skip to main content

Lipidomics, Biomarkers, and Schizophrenia: A Current Perspective

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 965))

Abstract

Lipidomics is a lipid-targeted metabolomics approach aiming at comprehensive analysis of lipids in biological systems. Recent technological progresses in mass spectrometry, nuclear magnetic resonance spectroscopy, and chromatography have significantly enhanced the developments and applications of metabolic profiling of lipids in more complex biological samples. As many diseases reveal a notable change in lipid profiles compared with that of healthy people, lipidomics have also been broadly introduced to scientific research on diseases. Exploration of lipid biochemistry by lipidomics approach will not only provide insights into specific roles of lipid molecular species in health and disease, but it will also support the identification of potential biomarkers for establishing preventive or therapeutic approaches for human health. This chapter aims to illustrate how lipidomics can contribute for understanding the biological mechanisms inherent to schizophrenia and why lipids are relevant biomarkers of schizophrenia. The application of lipidomics in clinical studies has the potential to provide new insights into lipid profiling and pathophysiological mechanisms underlying schizophrenia. The future perspectives of lipidomics in mental disorders are also discussed herein.

The original version of this book was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-47656-8_14

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-47656-8_14

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AA:

Arachidonic acid

APCI:

Atmospheric pressure chemical ionization

BD:

Bipolar disorder

BMI:

Body mass index

CE:

Cholesteryl ester

Cer:

Ceramide

CNS:

Central nervous system

COX:

Cyclooxygenase

DG:

Diacylglycerol

DHA:

Docosahexaenoic acid

ELSD:

Evaporative light-scattering detector

ESI:

Electrospray ionization

FA:

Fatty acyl

FFA:

Free fatty acid

FID:

Flame ionization detector

FTICR:

Fourier transform ion cyclotron resonance

GC:

Gas chromatography

GL:

Glycerolipid

GP:

Glycerophospholipid

GPA:

Glycerophosphatidic acid

HDL:

High-density lipoprotein

hexCer:

Monohexosylceramide

HNE:

4-Hydroxynonenal

HPLC:

High-performance liquid chromatography

IM-MS:

Ion mobility-mass spectrometry

LDL:

Low-density lipoprotein

LOX:

Lipoxygenase

LPC:

Lysophosphatidylcholine

LPE:

Lysophosphatidylethanolamine

LPO:

Lipid peroxidation

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

NAPS:

N-acyl-phosphatidylserine

NMR:

Nuclear magnetic resonance

NPLC:

Normal-phase liquid chromatography

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphoglycerol

PI:

Phosphatidylinositol

PK:

Polyketide

Pl:

Plasmalogen

PL:

Phospholipid

PLA2 :

Phospholipase A2 PS: Phosphatidylserine

PR:

Prenol lipid

PS:

Phosphatidylserine

PUFA:

Polyunsaturated fatty acid

Q:

Quadrupole

RBC:

Red blood cell

ROS:

Reactive oxygen species

S1P:

Sphingosine-1-phosphate

SCZ:

Schizophrenia

SL:

Saccharolipid

SM:

Sphingomyelin

SP:

Sphingolipid

SPE:

Solid-phase extraction

ST:

Sterol lipid

TG:

Triacylglycerol

TLC:

Thin-layer chromatography

TOF:

Time of flight

UPLC:

Ultra-performance liquid chromatography

VLDL:

Very low-density lipoprotein

References

  1. Han X, Gross RW. Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci U S A. 1994;91:10635–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sethi S, Hayashi MA, Sussulini A, et al. Analytical approaches for lipidomics and its potential applications in neuropsychiatric disorders. World J Biol Psychiatry. 2016:1–15. doi:10.3109/15622975.2015.1117656.

  3. Quehenberger O, Armando AM, Brown AH, et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res. 2010;51:3299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Adibhatla RM, Hatcher JF. Role of lipids in brain injury and diseases. Future Lipidol. 2007;2:403–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Horrobin D. The lipid hypothesis of schizophrenia. In: Skinner ER, editor. Brain lipids and disorders in biological psychiatry, vol. 35. Amsterdam: Elsevier Science; 2002. p. 39–52.

    Chapter  Google Scholar 

  6. Berger GE, Smesny S, Amminger GP. Bioactive lipids in schizophrenia. Int Rev Psychiatry. 2006;18:85–98.

    Article  PubMed  Google Scholar 

  7. Ota VK, Noto C, Santoro ML, et al. Increased expression of NDEL1 and MBP genes in the peripheral blood of antipsychotic-naïve patients with first-episode. Eur Neuropsychopharmacol. 2015;25:2416–25.

    Article  CAS  PubMed  Google Scholar 

  8. Maurya PK, Noto C, Rizzo LB, et al. The role of oxidative and nitrosative stress in accelerated aging and major depression disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2016;65:134–44.

    Article  CAS  PubMed  Google Scholar 

  9. Kunz A, Anrather J, Zhou P, et al. Cyclooxygenase-2 does not contribute to postischemic production of reactive oxygen species. J Cereb Blood Flow Metab. 2007;27:545–51.

    Article  CAS  PubMed  Google Scholar 

  10. Paglia G, Kliman M, Claude E, et al. Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem. 2015;407:4995–5007.

    Article  CAS  PubMed  Google Scholar 

  11. Vilella F, Ramirez LB, Simón C. Lipidomics as an emerging tool to predict endometrial receptivity. Fertil Steril. 2013;99:1100–6.

    Article  CAS  PubMed  Google Scholar 

  12. Smolinska A, Blanchet L, Buydens LMC, et al. NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta. 2012;750:82–97.

    Article  CAS  PubMed  Google Scholar 

  13. Liu M, Nicholson JK, Lindon JC. High-resolution diffusion and relaxation edited one- and two-dimensional 1H NMR spectroscopy of biological fluids. Anal Chem. 1996;68:3370–6.

    Article  CAS  PubMed  Google Scholar 

  14. Rolim AEH, Henrique-Araújo R, Ferraz EG, et al. Lipidomics in the study of lipid metabolism: current perspectives in the omic sciences. Gene. 2015;554:131–9.

    Article  CAS  PubMed  Google Scholar 

  15. Tukiainen T, Tynkkynen T, Mäkinen VP, et al. A multi-metabolite analysis of serum by 1H NMR spectroscopy: early systemic signs of Alzheimer’s disease. Biochem Biophys Res Commun. 2008;375:356–61.

    Article  CAS  PubMed  Google Scholar 

  16. Teo CC, Chong WPK, Tan E, et al. Advances in sample preparation and analytical techniques for lipidomics study of clinical samples. Trends Anal Chem. 2015;66:1–18.

    Article  CAS  Google Scholar 

  17. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226:497–509.

    CAS  PubMed  Google Scholar 

  18. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kaddurah-Daouk R, McEvoy J, Baillie RA, et al. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatry. 2007;12:934–45.

    Article  CAS  PubMed  Google Scholar 

  20. Taha AY, Cheon Y, Ma K, et al. Altered fatty acid concentrations in prefrontal cortex of schizophrenic patients. J Psychiatr Res. 2013;47:636–43.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Carrasco-Pancorbo A, Navas-Iglesias N, Cuadros-Rodríguez L. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: modern lipid analysis. Trends Anal Chem. 2009;28:263–78.

    Article  CAS  Google Scholar 

  22. Li M, Yang L, Bai Y, et al. Analytical methods in lipidomics and their applications. Anal Chem. 2014;81:161–75.

    Article  Google Scholar 

  23. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov. 2005;4:594–610.

    Article  CAS  PubMed  Google Scholar 

  24. Lutz NW, Cozzone PJ. Principles of multiparametric optimization for phospholipidomics by 31P NMR spectroscopy. Biophys Rev. 2013;5:295–304.

    Article  CAS  Google Scholar 

  25. Leftin A, Mologu TR, Job C. Area per lipid and cholesterol interactions in membranes from separated local-field 13C NMR spectroscopy. Biophys J. 2014;107:2274–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ala-Korpela M. 1H NMR spectroscopy of human blood plasma. Prog Nucl Magn Reson. 1995;27:475–554.

    Article  CAS  Google Scholar 

  27. Barrilero R, Llobet E, Mallol R, et al. Design and evaluation of standard lipid prediction models based on 1H-NMR spectroscopy of human serum/plasma samples. Metabolomics. 2015;11:1394–404.

    Article  CAS  Google Scholar 

  28. Nicolay K, Braun KPJ, de Graaf RA, et al. Diffusion NMR spectroscopy. NMR Biomed. 2001;14:94–111.

    Article  CAS  PubMed  Google Scholar 

  29. Piotto M, Saudek V, Sklenář V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR. 1992;2:661–5.

    Article  CAS  PubMed  Google Scholar 

  30. Liu M, Nicholson JK, Parkinson JA, et al. Measurement of biomolecular diffusion coefficients in blood plasma using two-dimensional 1H-1H diffusion-edited Total-Correlation NMR Spectroscopy. Anal Chem. 1997;69:1504–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lopes TI, Geloneze B, Pareja JC, et al. “Omics” prospective monitoring of bariatric surgery: roux-en-Y gastric bypass outcomes using mixed-meal tolerance test and time-resolved (1)H NMR-based metabolomics. OMICS. 2016;20:415–23.

    Article  CAS  PubMed  Google Scholar 

  32. Cai HL, Li HD, Yan XZ, et al. Metabolomic analysis of biochemical changes in the plasma and urine of first-episode neuroleptic-naiv̈e schizophrenia patients after treatment with Risperidone. J Proteome Res. 2012;11:4338–50.

    Article  CAS  PubMed  Google Scholar 

  33. Gibbs SJ, Johnson Jr CS. A PFG NMR experiment for accurate diffusion and flow studies in the presence of eddy currents. J Magn Reson. 1991;93:395–402.

    Google Scholar 

  34. Fordham EJ, Gibbs SJ, Hall LD. Partially restricted diffusion in a permeable sandstone: observations by stimulated echo PFG NMR. Magn Reson Imaging. 1994;12:279–84.

    Article  CAS  PubMed  Google Scholar 

  35. Wu D, Chen A, Johnson CS. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson A. 1995;115:260–4.

    Article  CAS  Google Scholar 

  36. Beckwith-Hall BM, Thompson NA, Nicholson JK, et al. A metabonomic investigation of hepatotoxicity using diffusion-edited 1H NMR spectroscopy of blood serum. Analyst. 2003;128:814–8.

    Article  CAS  PubMed  Google Scholar 

  37. Checa A, Bedia C, Jaumot J. Lipidomic data analysis: tutorial, practical guidelines and applications. Anal Chim Acta. 2015;885:1–16.

    Article  CAS  PubMed  Google Scholar 

  38. Hyötyläinen T, Orešič M. Optimizing the lipidomics workflow for clinical studies-practical considerations. Anal Bioanal Chem. 2015;407:4973–93.

    Article  PubMed  Google Scholar 

  39. Kotronen A, Velagapudi VR, Yetukuri L, et al. Saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum triacylglycerol concentrations. Diabetologia. 2009;52:684–90.

    Article  CAS  PubMed  Google Scholar 

  40. Vieu C, Terce F, Chevy F, et al. Coupled assay of sphingomyelin and ceramide molecular species by gas liquid chromatography. J Lipid Res. 2002;43:510–22.

    CAS  PubMed  Google Scholar 

  41. Breier M, Wahl S, Prehn C, et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS One. 2014;9:e89728.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ishikawa M, Maekawa K, Saito K, et al. Plasma and serum lipidomics of healthy white adults shows characteristic profiles by subjects’ gender and age. PLoS One. 2014;9:e91806.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zivkovic AM, Wiest MM, Nguyen U, et al. Assessing individual metabolic responsiveness to a lipid challenge using a targeted metabolomic approach. Metabolomics. 2009;5:209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gooley JJ, Chua EC. Diurnal regulation of lipid metabolism and applications of circadian lipidomics. J Genet Genomics. 2014;41:231–50.

    Article  CAS  PubMed  Google Scholar 

  45. Pietilainen KH, Sysi-Aho M, Rissanen A, et al. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects – a monozygotic twin study. PLoS One. 2007;2:e218.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sethi S, Brietzke E. Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. Int J Neuropsychopharmacol. 2016;19(3):pyv096. doi:10.1093/ijnp/pyv096.

    Article  Google Scholar 

  47. Sethi S, Chourasia D, Parhar IS. Approaches for targeted proteomics and its potential applications in neuroscience. J Biosci. 2015;40:607–27.

    Article  CAS  PubMed  Google Scholar 

  48. Meikle P, Barlow C, Weir J. Lipidomics and lipid biomarker discovery. Aus Biochemist. 2009;40:12–6.

    Google Scholar 

  49. Draisma HH, Reijmers TH, Bobeldijk-Pastorova I, et al. Similarities and differences in lipidomics profiles among healthy monozygotic twin pairs. OMICS. 2008;12:17–31.

    Article  CAS  PubMed  Google Scholar 

  50. Schmitt A, Wilczek K, Blennow K, et al. Altered thalamic membrane phospholipids in schizophrenia: a postmortem study. Biol Psychiatry. 2004;56:41–5.

    Article  CAS  PubMed  Google Scholar 

  51. Schwarz E, Prabakaran S, Whitfield P, et al. High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and Ceramides. J Proteome Res. 2008;7:4266–77.

    Article  CAS  PubMed  Google Scholar 

  52. Hamazaki K, Choi KH, Kim HY. Phospholipid profile in the postmortem hippocampus of patients with schizophrenia and bipolar disorder: no changes in docosahexaenoic acid species. J Psychiatr Res. 2010;44:688–93.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Orešič M, Tang J, Seppänen-Laakso T, et al. Metabolome in schizophrenia and other psychotic disorders: a general population-based study. Genome Med. 2011;3:19.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Orešič M, Seppänen-Laakso T, Sun D, et al. Phospholipids and insulin resistance in psychosis: a lipidomics study of twin pairs discordant for schizophrenia. Genome Med. 2012;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  55. McEvoy J, Baillie RA, Zhu H, et al. Lipidomics reveals early metabolic changes in subjects with schizophrenia: effects of atypical antipsychotics. PLoS One. 2013;8:e68717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wood PL. Accumulation of N-acylphosphatidylserines and N-acylserines in the frontal cortex in schizophrenia. Neurotransmitter. 2014;1:e263.

    PubMed  PubMed Central  Google Scholar 

  57. Wood PL, Filiou MD, Otte DM, et al. Lipidomics reveals dysfunctional glycosynapses in schizophrenia and the G72/G30 transgenic mouse. Schizophr Res. 2014;159:365–9.

    Article  PubMed  Google Scholar 

  58. Wood PL, Unfried G, Whitehead W, et al. Dysfunctional plasmalogen dynamics in the plasma and platelets of patients with schizophrenia. Schizophr Res. 2015;161:506–10.

    Article  PubMed  Google Scholar 

  59. Wood PL, Holderman NR. Dysfunctional glycosynapses in schizophrenia: disease and regional specificity. Schizophr Res. 2015;166:235–7.

    Article  PubMed  Google Scholar 

  60. Weng R, Shen S, Burton C, et al. Lipidomic profiling of tryptophan hydroxylase 2 knockout mice reveals novel lipid biomarkers associated with serotonin deficiency. Anal Bioanal Chem. 2016;408:2963–73.

    Article  CAS  PubMed  Google Scholar 

  61. Ponizovsky AM, Modai I, Nechamkin Y, et al. Phospholipid patterns of erythrocytes in schizophrenia: relationships to symptomatology. Schizophr Res. 2001;52:121–6.

    Article  CAS  PubMed  Google Scholar 

  62. Kaddurah-Daouk R, McEvoy J, Baillie R, et al. Impaired plasmalogens in patients with schizophrenia. Psychiatry Res. 2012;198:347–52.

    Article  CAS  PubMed  Google Scholar 

  63. Rao JS, Kellom M, Reese EA, et al. Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients. J Affect Disord. 2012;136:63–71.

    Article  CAS  PubMed  Google Scholar 

  64. Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012;37:4–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, Brazil) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil) for their financial support and fellowship. SS received a Young Talent Scholarship from the CNPq. BSB received a scholarship from the FAPESP (2013/14707-9), and JGMP received a scholarship from the CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa Brietzke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sethi, S., Hayashi, M.A.F., Barbosa, B.S., Pontes, J.G.M., Tasic, L., Brietzke, E. (2017). Lipidomics, Biomarkers, and Schizophrenia: A Current Perspective. In: Sussulini, A. (eds) Metabolomics: From Fundamentals to Clinical Applications. Advances in Experimental Medicine and Biology(), vol 965. Springer, Cham. https://doi.org/10.1007/978-3-319-47656-8_11

Download citation

Publish with us

Policies and ethics