Skip to main content

Facile Green Strategy for Preparation of Advanced Structured Materials Based on Amphiphilic Cardanol

  • Chapter
  • First Online:
Cashew Nut Shell Liquid

Abstract

Cashew nutshell liquid oil among different renewable resources is one of the agricultural by-products available in tropical countries such as India that is used to produce cardanol as naturally occurring fatty phenols. It has attracted great attention in advanced chemical industries to produce biopolymers, bio-surfactants, bio-composites and nanomaterials. It represents an excellent alternative feedstock for the elaboration of chemicals and polymers. Moreover, cardanol is regarded as a versatile and valuable raw material for wide applications in the form of brake linings, surface coatings, paints and varnishes as well as in polymer production. In this chapter, the possible modifications of cardanol to produce monomeric and polymeric surfactants have been discussed in different reaction schemes. It can be recommended that because of their renewable nature and structural characteristics, cardanol is likely candidates for preparing “green” surfactant species like anionic (sulfonates), non-ionic (ethoxylated and cardanol–formaldehyde ethoxylated polymers) and cationic (quaternary ammonium, pyridinium and imidazolium derivatives) to replace the petroleum based on nonylphenol surfactants. Moreover, it can be used to prepare biopolymer, polymer nanocomposites and semisynthetic processes to prepare derivatives with biological and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal S, Mishra A, Rai JSP (2003) Effect of diluents on the curing behavior of vinyl ester resin. J Appl Polym Sci 87:1948–1951

    Article  Google Scholar 

  2. Agarwal SN, Murthy BGK, Sivasamban MA, Aggarwal JS (1969) Improvement in or relating to the production of pale coloured coating material from cardanol. Indian Pat 112:36

    Google Scholar 

  3. Alexander M, Thachil ET (2006) A comparative study of cardanol and aromatic oil plasticisers for carbon black filled natural rubber. J Appl Polym Sci 102:4835–4841. doi:10.1002/app.24811

    Article  Google Scholar 

  4. Alva KS, Nayak PL, Kumar J, Tripathy SK (1997) Enzymatic polymerization of phenolic biomonomers derived from cashew nut shell liquid. J Macromol Sci, Pure Appl Chem A34:665–674. doi:10.1080/10601329708014992

    Article  Google Scholar 

  5. Amendola E, Giamberini M, Carfagna C, Ambrogi V (2002) Self-toughing liquid crystalline vinyl ester adhesives. Macromol Symp 180:153–167

    Article  Google Scholar 

  6. Anilkumar P, Jayakannan M (2006) New renewable resource amphiphilic molecular design for size-controlled and highly ordered polyaniline nanofibers. Langmuir 22:5952–5957. doi:10.1021/la060173n

    Article  Google Scholar 

  7. Atta AM, Dyab AKF, Al-Lohedan HA (2013) Surface activity of novel polymerizable anionic polyoxyethylene 4-nonyl -2-prpylene-phenyl ether ammonium sulfate succinate surfactants. J Disp Sci Technologies 34:1211–1222. doi:10.1080/01932691.2012.739942

    Article  Google Scholar 

  8. Atta AM, Dyab AKF, Al-Lohedan HA (2013) Micellization and adsorption behaviors of new reactive polymerizable surfactants based on modified nonyl phenol ethoxylates. J Surf Deterg 16:343–355. doi:10.1007/s11743-012-1413-5

    Article  Google Scholar 

  9. Atta AM, Abdel-Rauf ME, Maysour NE, Gafer AK (2010) Water based oil spill dispersants based on rosin formaldehyde resins. J disp sci technol 31:583–595. doi:10.1080/01932690903212313

    Article  Google Scholar 

  10. Atta AM, El-Kafrawy A, Abdel-Rauf ME, Maysour NE, Gafer AK (2010) Surface and Thermodynamic Properties of Nonionic Surfactants Based on Rosin- Maleic Anhydride and Acrylic Acid Adducts. J disp sci technol 31:567–576. doi:10.1080/01932690903192689

    Article  Google Scholar 

  11. Atta AM, El-Kafrawy AF, Aly MH, Abdel-Azim AA (2007) New epoxy resins based on recycled poly(ethylene terephthalate) as organic coatings. Prog Org Coat 58:13–22. doi:10.1016/j.porgcoat.2006.11.001

    Article  Google Scholar 

  12. Atta AM, Elnagdy SI, Abdel-Raouf ME, Elsaeed SM, Abdel-Azim AA (2005) Compressive properties and curing behaviour of unsaturated polyester resins in the presence of vinyl ester resins derived from recycled poly(ethylene terephthalate). J Polym Res 12:373–383. doi:10.1007/s10965-005-1638-3

    Article  Google Scholar 

  13. Atta AM, Elsaeed AM (2011) Use of rosin-based nonionic surfactants as petroleum crude oil sludge dispersants. J Appl Polym Sci 122:183–192. doi:10.1002/app.34052

    Article  Google Scholar 

  14. Atta AM, Elsaeed AM, Farag RK, El-Saeed SM (2007) Synthesis of unsaturated polyester resins based on rosin acrylic acid adduct for coating applications. React Funct Polym 67:549–563. doi:10.1016/j.reactfunctpolym.2007.03.009

    Article  Google Scholar 

  15. Atta AM, El-Saeed SM, Farag RK (2006) New vinyl ester resins based on rosin for coating applicationsmers. React Funct Polym 66:1596–1608. doi:10.1016/j.reactfunctpolym.2006.06.002

    Article  Google Scholar 

  16. Atta AM, Mansour R, Abdou MI, Sayed AM (2004) Epoxy resins from rosin acids: synthesis and characterization. Polym Adv Technol 15:514–522. doi:10.1002/pat.507

    Article  Google Scholar 

  17. Atta AM, Elsaeed AM (2011) Preparation and characterization of epoxy binders based on rosin. Recent Pat Corros Sci 3:132–143

    Google Scholar 

  18. Atta AM, Mansour R (2005) Synthesis and characterization of tetra-functional epoxy resins from rosin. J Polym Res 12:127–138. doi:10.1007/s10965-004-2936-x

    Article  Google Scholar 

  19. Avadhani CV, Wadgaonkar PP, Sivaram S (2001) 1,1-Bis(4-hydroxyphenyl)-3-alkylcyclohexanes, method for their preparation and polycarbonates prepared therefrom. US6255439

    Google Scholar 

  20. Bakshi SH, Krishnaswamy N (1965) Indian J Chem 3:503

    Google Scholar 

  21. Balachandran VS, Jadhav SR, Vemul PK, John G (2013) Recent advances in cardanol chemistry in a nutshell: from a nut to nanomaterials. Chem Soc Rev 42:427–438. doi:10.1039/C2CS35344J

    Article  Google Scholar 

  22. Bhadani A, Kataria H, Singh S (2011) Synthesis, characterization and comparative evaluation of phenoxy ring containing long chain Gemini imidazolium and pyridinium amphiphiles. J Colloid Interface Sci 361:33–41. doi:10.1016/j.jcis.2011.05.023

    Article  Google Scholar 

  23. Bhunia HP, Jana RN, Basak A, Lenka S, Nando GB (1998) Synthesis of polyurethane from cashew nut shell liquid (CNSL), a renewable resource. J Polym Sci, Part A: Polym Chem 36:391–400. doi:10.1002/(SICI)1099-0518(199802)36:3<391:AID-POLA3>3.0.CO;2-V

    Article  Google Scholar 

  24. Bhunia HP, Nando GB, Basak A, Lenka S, Nayak P (1999) Synthesis and caracterization of polymers from cashewnut shell liquid (CNSL), a renewable resource III. Synthesis of a polyether. Eur Polym J 35:1713–1722. doi:10.1016/S0014-3057(98)00244-4

    Article  Google Scholar 

  25. Bhunia HP, NandoGB Chaki TK, Basak A, Lenka S, Nayak PL (1999) Synthesis and characterization of polymers from cashewnut shell liquid (CNSL), a renewable resource II. Synthesis of polyurethanes. Eur Polym J 35:381–1391

    Google Scholar 

  26. Bisio AL, Xanthos M (1995) How to manage plastics wastes. Hanser Gardner Publication, USA, pp 253–280

    Google Scholar 

  27. Biswal S, Satapathy JR, Achary PGR, Pal NC (2012) The synthesis and FTIR, kinetics and TG/DTG/DTA study of inter penetrating polymer networks (IPNs) derived from polyurethanes of glycerol modified castor oil and cardanol based dyes. J Polym Env 20:788–793

    Article  Google Scholar 

  28. Biswas AK, Roy AB (1961) Studies on sodium anacardate. J Proc Inst Chem 33(II):81–85

    Google Scholar 

  29. Biswas AK, Roy AB (1958) Surface-active characteristics of sodium anacardate isolated from cashew nut shell. Oil Nat 182:1299–1300. doi:10.1038/1821299b0

    Article  Google Scholar 

  30. Dixit C, Sharma BL (1969) Indian Pat. I11326

    Google Scholar 

  31. Calo E, Maffezzoli A, Mele G, Martina F, Mazzetto SE, Tarzia A et al (2007) Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chem 9:754–759. doi:10.1039/B617180J

    Article  Google Scholar 

  32. Campaner P, Amico DD, Longo L, Stifani C, Tarzia A (2009) Cardanol-based novolac resins as curing agents of epoxy resins. J Appl Pol Sci 114:3585–3591

    Article  Google Scholar 

  33. Caplan S (1940) Treatment of cashew nut shell liquid. US Patent 2,176,059

    Google Scholar 

  34. Cheng C, Bai X, Liu S, Huang Q, Tu Y, Wu H, Wang X (2013) UV cured polymer based on a renewable cardanol derived RAFT agent. J Polym Res 20:197–204. doi:10.1007/s10965-013-01972

    Article  Google Scholar 

  35. Darroman E, Bonnot L, Auvergne R, Boutevin B, Caillol S (2015) New aromatic amine based on cardanol giving new biobased epoxy networks with cardanol. Eur J Lipid Sci Technol 117:178–189

    Article  Google Scholar 

  36. Darroman E, Durand N, Boutevin B, Caillol S (2015) New cardanol/sucrose epoxy blends for biobased coatings. Prog Org Coat 83:47–54

    Article  Google Scholar 

  37. Deepak VD, Asha SK (2006) Self-organization-induced three-dimensional honeycomb pattern in structure-controlled bulky methacrylate polymers: synthesis, morphology, and mechanism of pore formation. J Phys Chem B 110:21450–21459. doi:10.1021/jp063469a

    Article  Google Scholar 

  38. Devi A, Srivastava D (2007) Studies on the blends of cardanol-based epoxidized novolac type phenolic resin and carboxyl-terminated polybutadiene (CTPB). Mater Sci Eng A458:336–347. doi:10.1016/j.msea.2006.12.081

    Article  Google Scholar 

  39. Dickerson TJ, Reed NN, Janda KD (2002) Soluble polymers as scaffolds for recoverable catalysts and reagents. Chem Rev 102:3325–3344. doi:10.1021/cr010335e

    Article  Google Scholar 

  40. Durrani AA, Davis GL, Sood SK, Tychopoulos V, Tyman JHP (1982) Long-Chain phenols*. Part 231 practical separations of the component phenols in technical cashew nut-shell liquid (Anacardium occidentale): distillation procedures for obtaining cardano. J Chem Tech Biotechnol 32:681–690. doi:10.1002/jctb.5030320704

    Article  Google Scholar 

  41. Dwanisa JPL, Mohanty AK, Misra M, Drazal LT (2004) Polyurethane and its composite with glass fiber. J Mater Sci 39:2081–2087

    Article  Google Scholar 

  42. Fengkui LL, Larock RC (2001) New soybean oil-styrene-divinylbenzene thermosetting copolymers. III. Tensile stress–strain behavior. J Polym Sci Part B Polym Sci 39:60–77. doi:10.1002/1099-0488(20010101)39:1<60:AID-POLB60>3.0

    Article  Google Scholar 

  43. Figen Balo H, Yuce L, Ucar A (2010) Physical and mechanical properties of materials prepared using Class C fly ash and soybean oil. J Porous Mater 17:553–564. doi:10.1007/s10934-009-9324-1

    Article  Google Scholar 

  44. Gadem PH, Sampathkumaran PS (1986) Cashew nut shell liquid: extraction, chemistry and applications. Prog Org Coat 14:115–157. doi:10.1016/0033-0655(86)80009-7

    Article  Google Scholar 

  45. Gaur B, Rai JSP (1993) The spectral and magnetic properties of some chloro and thiocyanato transition metal complexes of the aminopyridines and a study of their performance as colouring materials for poly(vinyl chloride) Eur. Polym J 29:1149–1153

    Google Scholar 

  46. Ghatge ND, Maldar NN (1984) Polyimides from dianhydride and diamine: structure property relations by thermogravimetric analysis (t.g.a.). Polymer 25:1353–1356. doi:10.1016/0032-3861(84)90390-2

    Article  Google Scholar 

  47. Gopalakrishnan S, Fernando TL (2012) Influence of polyols on properties of bio-based polyurethanes. Bull Mater Sci 35:243–251

    Article  Google Scholar 

  48. Greco A, Brunetti D, Renna G, Mele G, Maffezzoli A (2010) Plasticizer for poly(vinyl chloride) from cardanol as a renewable resource material. Pol Degrad Stab 95:2169–2174

    Article  Google Scholar 

  49. Greenwald RB (2001) PEG drugs: an overview. J Control Release 74:159–171. doi:10.1016/S0168-3659(01)00331-5.20

    Article  Google Scholar 

  50. Guo-peng S, Jiu-zhu L, Ming-jian W, Qian H (2013) Synthesis and surface activity of quaternary ammonium salt surfactant prepared from cardanol. China Surf Deterg Cosmet 3:188–191

    Google Scholar 

  51. Guyot A (2004) Advances in reactive surfactants. Adv Colloid Interface Sci 108:3–22. doi:10.1016/j.cis.2003.10.009

    Article  Google Scholar 

  52. Harvey MT (1929) Resin form cashew nut shell oil. US Patent 1,725,791

    Google Scholar 

  53. Harvey MT (1929) Substitute for Shellac and the Lik. US Patent 1,725,793

    Google Scholar 

  54. Harvey MT, Damitz FM (1941) Polyiherization of cashew shell liquid and products thereof mortimer. US Patent 2,240,038

    Google Scholar 

  55. He JL, Zhang XL, Wang LL, Yang Y (1989) J China Plast Ind 4:14–21

    Google Scholar 

  56. Hemalatha IN, Yaseen M, Aggarwal JS (1972) Kinetics of reaction between meta-substituted long chain alkyl phenols and formaldehyde. Angew Macromol Chem 24:163–169. doi:10.1002/apmc.1972.050240111

    Article  Google Scholar 

  57. Hemalatha IN, Dakshinamurthy H, Aggarwai JS (1968) Paint Manuf 38(6):29

    Google Scholar 

  58. Hourdet D, Ducouret G, Varghese S, Badiger MV, Wadgaonkar PP (2013) Thermodynamic behavior of hydrophobically modified polyacrylamide containing random distribution of hydrophobes: Experimental and theoretical investigations. Polymer 54:2676–2689. doi:10.1016/j.polymer.2013.03.039

    Article  Google Scholar 

  59. Huong NL, Nieu NH, Tan TTM, Griesser U (1996) Cardanol-phenol-formaldehyde resins. Thermal analysis and characterization. Angew Makromol Chem 243:77–85

    Article  Google Scholar 

  60. Ionescu M, Petrovic ZS (2011) Phenolation of vegetable oils. J Serb Chem Soc 76:591–606

    Article  Google Scholar 

  61. Ionescu M, Wan X, Bilic N, Petrovic ZS (2012) Polyols and rigid polyurethane foams from cashew nut shell liquid. J Polym Environ 20:647–658. doi:10.1007/s10924-012-0467-9

    Article  Google Scholar 

  62. Jadhav AS, Vernekar SP, Maldar NN (1993) Synthesis and characterization of new aromatic sulfone ether polyamides containing pendant pentadecyl groups. Polym Int 32:5–11. doi:10.1002/pi.4990320103

    Article  Google Scholar 

  63. Jaillet F, Darroman E, Ratsimihety A, Auvergne R et al (2014) New biobased epoxy materials from cardanol. Eur J Lipid Sci Technol 116:63–73

    Article  Google Scholar 

  64. Jain PK, Sivala KJ (1997) Development of a cashew nut sheller. J Food Eng 32:339–345. doi:10.1016/S0260-8774(97)00020-4

    Article  Google Scholar 

  65. Jing S, Li T, Li X, Xu Q, Hu J, Li R (2014) Phenolic foams modified by cardanol through bisphenol modification. J Appl Polym Sci 131:39942. doi:10.1002/app.39942

    Google Scholar 

  66. John G, Masuda M, Okada Y, Yase K, Shimizu T (2001) Nanotube formation from renewable resources via coiled nanofibers. Adv Mater 13:715–718. doi:10.1002/1521-4095(200105)13:10<715:AID-DMA715>3.0.CO;2-Z

    Article  Google Scholar 

  67. John G, Pillai CKS (1992) Self-crosslinkable monomer from cardanol: crosslinked beads of poly(cardanyl acrylate) by suspension polymerization. Macromol Rapid Commun 13:255–259. doi:10.1002/marc.1992.030130502

    Article  Google Scholar 

  68. John G, Pillai CKS (1993) Synthesis and characterization of a self-crosslinkable polymer from cardanol: Autooxidation of poly(cardanyl acrylate) to crosslinked film. J Polym Sci A Polym Chem 31:1069–1073. doi:10.1002/pola.1993.080310429

    Article  Google Scholar 

  69. John G, Shali KT, Pillai CKS (1994) Cardanyl acrylate/methacrylate based cross-linked copolymers as novel supports: synthesis and characterization. J Appl Polym Sci 53:1415–1423. doi:10.1002/app.1994.070531103

    Article  Google Scholar 

  70. Kadam VS, Badiger MV, Wadgaonkar P, Ducouret G, Hourdet D (2008) Synthesis and self-assembling properties of α, ω-hydroxy-poly(ethylene oxide) end-capped with 1-isocyanato-3-pentadecylcyclohexane. Polymer 49:4635–4646. doi:10.1016/j.polymer.2008.07.064

    Article  Google Scholar 

  71. Kanehashi S, Yokoyama K, Masuda R, Kidesaki T et al (2013) Preparation and characterization of cardanol-based epoxy resin for coating at room temperature curing. J Appl Polym Sci 130:2468–2478

    Article  Google Scholar 

  72. Kang H, Choi Y-S, Hong H, Ko T, Kang D, Lee JC (2014) Vertical alignment of liquid crystals on polymer films containing renewable cardanol moieties. Eur Polym J 61:13–22. doi:10.1016/j.eurpolymj.2014.09.019

    Article  Google Scholar 

  73. Kaplan DL (1998) Biopolymers from renewable resources. Springer, New York, pp 1–417

    Book  Google Scholar 

  74. Kathalewar M, Sabnis A, D’Melo D (2014) Polyurethane coatings prepared from CNSL based polyols: Synthesis, characterization and properties. Prog Org Coat 77:616–626

    Article  Google Scholar 

  75. Kavitha V, Radhakrishnan N (2010) Biopolymer from microbial assisted in situ hydrolysis of triglycerides and dimerization of fatty acids. Bioresour Technol 101:337–343. doi:10.1016/j.biortech.2009.08.022

    Article  Google Scholar 

  76. Kim YH, An ES, Park SY, Song BK (2007) Enzymatic epoxidation and polymerization of cardanol obtained from a renewable resources and curing of epoxide-containing polycardanol. J Macromol Cat B Enzymatic 45:39–44

    Article  Google Scholar 

  77. Launikitis MB (1982) Handbook of composites. In: G. Lubin (ed) Van Nostran Reinhold Company Inc., New York, pp 38–49

    Google Scholar 

  78. Lee N, Kwon O-J, Chun BC, Cho JW (2009) Characterization of castor oil/polycaprolactone polyurethane biocomposites reinforced with hemp fibers. Fibers Polym 10:154–160. doi:10.1007/s12221-009-0154-1

    Article  Google Scholar 

  79. Lochab B, Varma IK, Bijwe J (2010) Thermal behavior of cardanol-based benzoxazines. Monom Polym 102:769–774

    Google Scholar 

  80. Mahesh S, Raju D, Arathi AS, Kuruvilla J (2014) Self-assembly of cardanol based supramolecular synthons to photoresponsive nanospheres: light induced size variation at the nanoscale. RSC Adv 4:42747–42750. doi:10.1039/C4RA07406H

    Article  Google Scholar 

  81. Manjula S, Pillai CKS (1990) Thermal characterization of cardanol-formaldehyde resins and cardanol-formaldehyde/poly(methyl methacrylate) semi-interpenetrating polymer networks. Thermochim Acta 159:255–266. doi:10.1016/0040-6031(90)80114-E

    Article  Google Scholar 

  82. Mathew JS, Vernekar SP, Mercier R, Kerboua R(2002) Polyimides, process for the preparation thereof and use thereof as alignment films for liquid crystal devices. US6500913

    Google Scholar 

  83. More AS, Patil AS, Wadgaonkar PP (2010) Poly(amideimide)s containing pendant pentadecyl chains: synthesis and characterization. Polym Degrad Stab 95:837–844. doi:10.1016/j.polymdegradstab.2010.01.030

    Article  Google Scholar 

  84. More AS, Sane PS, Patil AS, Wadgaonkar PP (2010) Synthesis and characterization of aromatic polyazomethines bearing pendant pentadecyl chains. Polym Degrad Stab 95:1727–1735. doi:10.1016/j.polymdegradstab.2010.05.017

    Article  Google Scholar 

  85. More AS, Menon SK, Wadgaonkar PP (2012) New poly(1,3,4-oxadiazole)s bearing pentadecyl side chains: synthesis and characterization. J Appl Polym Sci 124:1281–1289. doi:10.1002/app.34682

    Article  Google Scholar 

  86. More AS, Naik PV, Kumbhar KP, Wadgaonkar PP (2010) Synthesis and characterization of polyesters based on 1,1,1-[bis(4-hydroxyphenyl)-4′-pentadecylphenyl]ethane. Polym Int 59:1408–1414. doi:10.1002/pi.2883

    Article  Google Scholar 

  87. More AS, Pasale SK, Wadgaonkar PP (2010) Synthesis and characterization of polyamides containing pendant pentadecyl chains. Eur Polym J 46:557–567. doi:10.1016/j.eurpolymj.2009.11.014

    Article  Google Scholar 

  88. More AS, Pasale SK, Honkhambe PN, Wadgaonkar PP (2011) Synthesis and characterization of organo-soluble poly(ether ether ketone)s and poly(ether ether ketone ketone)s containing pendant pentadecyl chains. J Appl Polym Sci 121:3689–3695. doi:10.1002/app.34181

    Article  Google Scholar 

  89. Mustafa N (1993) Plastics waste management disposal, recycling and reuse. Marcel Dekker, New York, pp 40–68

    Google Scholar 

  90. Mythili CV, Retna AM, Gopalakrishnan S (2004) Synthesis, mechanical, thermal and chemical properties of polyurethanes based on cardanol Bull. Mater Sci 27:235–241

    Google Scholar 

  91. Mythili CV, Malar Retna A, Gopalakrishnan S (2005) Physical, mechanical, and thermal properties of polyurethanes based on hydroxyalkylated cardanol–formaldehyde resins. J Appl Polym Sci 98:284–288. doi:10.1002/app.22016

    Article  Google Scholar 

  92. Nguyen LH, Koerner H, Lederer K (2003) Free radical Co- and terpolymerization of styrene, hydrogenated cardanyl acrylate, and cardanyl acetate. J Appl Polym Sci 88:1399–1409. doi:10.1002/app.11635

    Article  Google Scholar 

  93. Pal N, Srivastava A, Agrawal S, Rai JSP (2005) Mater Manuf Process 20:317–327

    Google Scholar 

  94. Patel J, Mannaric V (2014) Air-drying bio-based polyurethane dispersion from cardanol: synthesis and characterization of coatings Chintankumar. Prog Org Coat 77:997–1006. doi:10.1016/j.porgcoat.2014.02.006

    Article  Google Scholar 

  95. Patel MB, Patel RG, Patel VS (1989) Effects of reactive diluent diepoxidized cardanol and epoxy fortifier on curing kinetics of epoxy resin. J Therm Anal 35:447–457

    Google Scholar 

  96. Pathak SK, Rao BS (2006) Structural effect of phenalkamines on adhesive viscoelastic and thermal properties of epoxy networks. J Appl Polym Sci 102:4741–4748. doi:10.1002/app.25005

    Article  Google Scholar 

  97. Peungjitton P, Sangvanich P, Pornpakakul S, Petsom A, Roengsumran S (2009) Sodium cardanol sulfonate surfactant from cashew nut shell liquid. J Surfact Deterg 12:85–89. doi:10.1007/s11743-008-1082-6

    Article  Google Scholar 

  98. Pillai CKS, Prasad VS, Sudha JD, Bera SC, Menon ARR (1990) Polymeric resins from renewable resources. II. Synthesis and characterization of flame-retardant prepolymers from cardanol. J Appl Polym Sci 41:2487–2501. doi:10.1002/app.1990.070410947

    Article  Google Scholar 

  99. Pillai CKS, Sherrington DC, Sneddon A (1992) Thermotropic liquid crystalline copolyester based on 8-(3-hydroxyphenyl) octanoic acid and p-hydroxybenzoic acid. Polymer 33:3968–3970. doi:10.1016/0032-3861(92)90390-I

    Article  Google Scholar 

  100. Puchot L, Verge P, Toniazzo V, Ruch D, Fouquet T, Bomfim AS (2014) Tailoring the reactivity of bio-surfactants as a tool for montmorillonite exfoliation in epoxy thermosets. Appl Clay Sci 99:35–41. doi:10.1016/j.clay.2014.06.003

    Article  Google Scholar 

  101. Ramaiingamt T, Saitur B (1987) Synthesis and biological activity of 3-pentadecylaryloxyacetic. Acids, their hydrazides and cyclic derivatives: oxadiazoles and pyrroles. Ind J Chem 26B:1204–1208

    Google Scholar 

  102. Ramalingam T, Sattur PB (1989) Synthesis and biological activity of 0.-(3-pentadecylaryloxy)isobutyric acids, their hydrazidesand cyclic derivatives: oxadiazoles and pyrroles. J Chem 28B:611–613

    Google Scholar 

  103. Rao BS, Palamisamy AW (2011) Monofunctional benzoxazine from cardanol for biocomposite applications. React Funct Polym 71:148–154. doi:10.1016/j.reactfunctpolym.2010.11.025

    Article  Google Scholar 

  104. Raqueza J-M, Deléglisea M, Lacrampe M-F, Krawczak P (2010) Thermosetting (bio)materials derived from renewable resources: a critical review. Polym Sci 35:487–509. doi:10.1016/j.progpolymsci.2010.01.001

    Google Scholar 

  105. Rekha N, Asha SK (2008) Synthesis and FTIR spectroscopic investigation of the UV curing kinetics of telechelic urethane methacrylate crosslinkers based on the renewable resource—Cardanol. J Appl Polym Sci 109:2781–2790. doi:10.1002/app.28342

    Article  Google Scholar 

  106. Rekha N, Asha SK (2009) Solvent-induced self-assembly in cardanol-based urethane methacrylate comb polymers. J Polym Sci, Part A: Polym Chem 47:2996–3009. doi:10.1002/pola.23383

    Article  Google Scholar 

  107. Sadavarte NV, Halhalli MR, Avadhani CV, Wadgaonkar PP (2009) Synthesis and characterization of new polyimides containing pendent pentadecyl chains. Eur Polym J 45:582–589. doi:10.1016/j.eurpolymj.2008.11.013

    Article  Google Scholar 

  108. Sadavarte NV, Avadhani CV, Naik PV, Wadgaonkar PP (2010) Regularly alternating poly(amideimide)s containing pendent pentadecyl chains: synthesis and characterization. Eur Polym J 46:1307–1315. doi:10.1016/j.eurpolymj.2010.03.007

    Article  Google Scholar 

  109. Sadavarte NV, Avadhani CV, Wadgaonkar PP (2011) High performance polyamides based on s-Triazine ring: synthesis and characterization. High Perform Polym 23:494–505. doi:10.1177/0954008310378054

    Article  Google Scholar 

  110. Sadavarte NV, Patil SS, Avadhani CV, Wadgaonkar PP (2013) New organosoluble aromatic poly(esterimide)s containing pendent pentadecyl chains: synthesis and characterization. High Perform Polym 25:735–743. doi:10.1177/0954008313483344

    Article  Google Scholar 

  111. Saladino R, Neri V, Mincione E, Marini S, Coletta M, Fiorucci C, Filippone P (1995) A new and efficient synthesis of ortho- and para-benzoquinones of cardanol derivatives by the catalytic system MeReO3–H2O2. J Chem Soc Perkin Trans 1:581–586. doi:10.1039/A908073B

    Google Scholar 

  112. Sathiyalekshmi K, Gopalakrishnan S (2000) Synthesis and characterisation of rigid polyurethanes based on hydroxyalkylated cardanolformaldehyde resin. Plast, Rubber Compos 29:63–69

    Article  Google Scholar 

  113. Sathiyalekshmi K, Gopalakrishnan S (2004) Evaluation of performance of polyurethanes based on hydroxy alkylated cardanol formaldehyde resins under aging conditions. Adv Polym Technol 23:91–102. doi:10.1002/adv.20005

    Article  Google Scholar 

  114. Sharma V, Kundu P (2006) Addition polymers from natural oils—a review. Prog Polym Sci 31:983–1008. doi:10.1016/j.progpolymsci.2006.09.003

    Article  Google Scholar 

  115. Shedge AS, Lele AK, Wadgaonkar P, Hourdet D, Perrin P, Chassenieux C, Badiger MV (2005) Hydrophobically modified poly(acrylic acid) using 3-pentadecylcyclohexylamine: synthesis and rheology. Macromol Chem Phys 206:464–472. doi:10.1002/macp.200400392

    Article  Google Scholar 

  116. Shi W, Wang P, Li C, Li J, Li H, Zhang Z, Wu S, Wang J (2014) Synthesis of cardanol sulfonate gemini surfactant and enthalpy-entropy compensation of micellization in aqueous solutions. Open J Appl Sci 4:360–365. doi:10.4236/ojapps.2014.46033

    Article  Google Scholar 

  117. Shukla R, Kumar P (2011) Self-curable epoxide resins based on cardanol for use in surface coatings. Pigm Resin Technol 40:311–333

    Article  Google Scholar 

  118. Sitaramam BS, Chatterjee PC (1989) Synthesis, polymerization, and end-use evaluation of 3-pentadecylphenyl acrylate and methacrylate. J Appl Polym Sci 37:33–37. doi:10.1002/app.1989.070370103

    Article  Google Scholar 

  119. Stewart R (2008) Going green: eco-friendly materials and recycling on growth paths. Plastics Eng 64:16–23

    Google Scholar 

  120. Subba Rao R, Harigopal VP (1975) Analysis of ethylene oxide adducts of cardanol and 3-pentadecylphenol by nuclear magnetic resonance and thin-layer chromatography procedures. Fette Seifen Anstrichm 77:197–199. doi:10.1002/lipi.19750770509

    Article  Google Scholar 

  121. Sudha JD, Reena VL (2007) Structure-directing effect of renewable resource based amphiphilic dopants on the formation of conducting polyaniline-clay nanocomposite. Macromol Symp 254(2007):274–284. doi:10.1002/masy.200750841

    Article  Google Scholar 

  122. Sudha JD, Reena VL, Pavithran C (2007) Facile green strategy for micro/nano structured conducting polyaniline-clay nanocomposite via template polymerization using amphiphilic dopant, 3-pentadecylphenol 4-sulphonic acid. J Polym Sci, Part B: Polym Phys 45:2664–2673. doi:10.1002/polb.21273

    Article  Google Scholar 

  123. Sultania M, Rai JSP, Srivastava D (2011) Process modeling, optimization and analysis of esterification reaction of cashew nut shell liquid (CNSL)-derived epoxy resin using response surface methodology. J Hazard Mater 185:1198–1204

    Article  Google Scholar 

  124. Sultania M, Rai JSP, Srivastava D (2012) Modeling and simulation of curing kinetics for the cardanol-based vinyl ester resin by means of non-isothermal DSC measurements. Mater Chem Phys 132:180–186

    Article  Google Scholar 

  125. Sultania M, Rai JSP, Srivastava D (2010) Kinetic modeling of esterification of cardanol-based epoxy resin in the presence of triphenylphosphine for producing vinyl ester resin: Mechanistic rate equation. J Appl Polym Sci 118:1979–1989

    Google Scholar 

  126. Sultania M, Rai JSP, Srivastava D (2010) Studies on the synthesis and curing of epoxidized novolac vinyl ester resins from nenewable resource material. Eur Polym J 46:2019–2032

    Article  Google Scholar 

  127. Suresh KI, Kishanprasad VS (2005) Synthesis, structure, and properties of novel polyols from cardanol and developed polyurethanes. Ind Eng Chem Res 44:4504–4512. doi:10.1021/ie0488750

    Article  Google Scholar 

  128. Suresh KI (2013) Rigid polyurethane foams from cardanol: synthesis, structural characterization, and evaluation of polyol and foam properties. ACS Sustain Chem Eng 1:232–242

    Article  Google Scholar 

  129. Suresh KI, Gesche F, Rolf S, Eckhard B (2012) Synthesis and micellization properties of new anionic reactive surfactants based on hydrogenated cardanol. J Surf Deterg 15:207–215. doi:10.1007/s11743-011-1294-z

    Article  Google Scholar 

  130. Tan TTM (1997) Cardanol–glycols and cardanol–glycol-based polyurethane films. J Appl Polym Sci 65:507–510. doi:10.1002/(SICI)1097-4628(19970718)65:3<507:AID-APP10>3.0.CO;2-U

    Article  Google Scholar 

  131. Tocco G, Fais A, Meli G, Begala M, Podda G, Fadda MB, Corda M, Attanasi OA, Filippone P, Berretta S (2009) PEG-immobilization of cardol and soluble polymer-supported synthesis of some cardol–coumarin derivatives: preliminary evaluation of their inhibitory activity on mushroom tyrosinase. Bioorg Med Chem Lett 19:36–39

    Article  Google Scholar 

  132. Tyman JHP (1979) Non-isoprenoid long chain phenols. Chem Soc Rev 8:499–537. doi:10.1039/CS9790800499

    Article  Google Scholar 

  133. Tyman JHP (2008) Synthetic and natural phenols. Elsevier, Amsterdam, ch. 3, pp 53–98

    Google Scholar 

  134. Tyman JHP (1989) The extraction of natural cashew nut-shell liquid from the cashew nut (Anacardium occidentale), development of a cashew nut sheller. J Am Oil Chem Soc 66:553–557. doi:10.1007/BF02885447

    Article  Google Scholar 

  135. Tyman JHP, Wilczynski D, Kashani MA (1978) Compositional studies on technical cashew nutshell liquid (CNSL) by chromatography and mass spectroscopy. J Am Oil Chem Soc 55:663–668

    Google Scholar 

  136. Tyman JHP (1976) Determination of the component phenols in natural and technical cashew nut-shell liquid by gas-liquid chromatography. Anal Chem 48:30–34

    Google Scholar 

  137. Tyman JHP, Bruce IE (2003) Synthesis and characterization of polyethoxylate surfactants derived from phenolic lipids. J Surf Deterg 6(4):291–297. doi:10.1007/s11743-003-0272-3

    Article  Google Scholar 

  138. Tyman JHP (1978) Long-chain phenols: XII. Compositional studies: The polymeric material in the unsaturated phenols of Anacardium occidentale. J Chromatogr 156:255–266

    Google Scholar 

  139. Unnikrishnan KP, Thomas Thachil EBY (2008) Studies on the modification of commercial epoxy resins using cardanol based phenolic resins. J Elastomers Plast 40:271–286

    Article  Google Scholar 

  140. Uyama H, Kobayashi S (1999) Enzymatic polymerization yields useful polyphenols. ChemTech 29:22–28

    Google Scholar 

  141. Uyama H, Ikeda R, Sugihara J, Kobayashi S (1998) Polym Prepr (Am Chem Soc Div Polym Chem) 39:106

    Google Scholar 

  142. Varela A, Oliveira G, Souza FG Jr, Rodrigues CHM, Costa MAS (2013) New petroleum absorbers based on cardanol-furfuraldehyde magnetic nanocomposites. Polym Eng Sci 53:44–51. doi:10.1002/pen.23229

    Article  Google Scholar 

  143. Varma AJ, Sivaram S (2002) (Hydroxyalkyl)phenols, method for their preparation, and uses thereof US 6451957

    Google Scholar 

  144. Vernekar SP (1980) Epoxy compound of cashew nut shell liquid as a stabilizer for polyvinyl-chloride. Ind J Technol 18:170

    Google Scholar 

  145. Voirin C, Caillol S, Sadavarte NV, Tawade BV, Boutevin B, Wadgaonkar PP (2014) Functionalization of cardanol: towards biobased polymers and additives. Polym Chem 5:3142–3162. doi:10.1039/C3PY01194A

    Article  Google Scholar 

  146. Yadav R, Srivastava D (2007) Kinetics of the acid-catalyzed cardanol–formaldehyde reactions. Mat Chem Phys 106:74–81. doi:10.1016/j.matchemphys.2007.05.020

    Article  Google Scholar 

  147. Zhang M, Zhang J, Chen S, Zhou Y (2014) Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine and cardanol. Polym Degrad Stab 110:27–34. doi:10.1016/j.polymdegradstab.2014.08.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman M. Atta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Atta, A.M., Allohedan, H.A. (2017). Facile Green Strategy for Preparation of Advanced Structured Materials Based on Amphiphilic Cardanol. In: Anilkumar, P. (eds) Cashew Nut Shell Liquid. Springer, Cham. https://doi.org/10.1007/978-3-319-47455-7_4

Download citation

Publish with us

Policies and ethics