Skip to main content

Methods in Neuromusicology: Principles, Trends, Examples and the Pros and Cons

  • Chapter
  • First Online:
Studies in Musical Acoustics and Psychoacoustics

Part of the book series: Current Research in Systematic Musicology ((CRSM,volume 4))

Abstract

Neuromusicology, also known as the Cognitive Neuroscience of Music, is a modern discipline devoted to the measurement of real-time processes in the human brain while perceiving and producing sound. Research topics range from acoustic feature processing and listening to melodies to composition and music performance. Before designing an experiment, researchers might find it helpful to be informed about the efficiency of methods and their pros and cons. The chapter at hand gives an overview of several methods used in the neurosciences with a special emphasis on their principles, constraints and fields of application. The focus is on transcranial magnetic stimulation (TMS), functional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencephalography (EEG) and on event-related potentials (ERP). The reader will also become acquainted with trends and recent developments towards whole-brain analyses and real life studies based on the idea to improve ecological validity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alluri, V., Toiviainen, P., Jääskeläinen, I.P., Glerean, E., Sams, M., Brattico, E.: Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage 59, 3677–3689 (2012)

    Article  Google Scholar 

  2. Andoh, J., Zatorre, R.J.: Interhemispheric connectivity influences the degree of modulation of TMS-induced effects during auditory processing. Front. Psychol. 2, Article 161, 13 pages (2011). doi:10.3389/fpsyg.2011.00161

  3. Besson, M., Faïta, F.: An event-related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians. J. Exp. Psychol.: Hum. Percept. Perf. 21(6), 1278–1296 (1995)

    Google Scholar 

  4. Bhattacharya, J., Petsche, H., Pereda, E.: Long-range synchrony in the ƴ-band: role in music perception. J. Neurosci. 21(6), 6329–6337 (2001)

    Google Scholar 

  5. Dietrich, A.: The cognitive neuroscience of creativity. Psychon. Bull. Rev. 11, 1011–1026 (2004)

    Article  Google Scholar 

  6. Drobisch, M. W.: Über musikalische Tonbestimmung und Temperatur [On musical pitch estimation and temperature]. In: Abhandlungen der Königlich-Sächsischen Gesellschaft der Wissenschaften 2, 1–120. Hirzel, Leizpig (1855).

    Google Scholar 

  7. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., Taub, E.: Increased cortical representation of the fingers of the left hand in string players. Science 270(5234), 305–307 (1995)

    Article  Google Scholar 

  8. Ericsson, K.A.: The influence of experience and deliberate practice on the development of superior expert performance. In: Ericsson, K.A., et al. (eds.) The Cambridge Handbook of Expertise and Expert Performance (Chapter 38, pp. 685–706. Cambridge University Press, New York (2006)

    Chapter  Google Scholar 

  9. Fachner, J.: Topographic EEG changes accompanying Cannabis-induced alteration of music perception—Cannabis as a hearing aid? J. Cannabis Ther. 2(2), 3–36 (2002)

    Article  Google Scholar 

  10. Friederici, A.D.: Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. 6(2), 78–84 (2002)

    Article  Google Scholar 

  11. Gingras, B., Pohler, G., Fitch, W.T.: Exploring Shamanic journeying: Repetitive drumming with Shamanic instructions induces specific subjective experiences but no larger Cortisol decrease than instrumental meditation music. PLOS One 9(7), 9 pages (2014)

    Google Scholar 

  12. Haynes, J.-D., Rees, G.: Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523–534 (2006)

    Article  Google Scholar 

  13. Jäncke, L.: Methoden der Bildgebung in der Psychologie und den kognitiven Neurowissenschaften. W. Kohlhammer, Stuttgart (2005)

    Google Scholar 

  14. Jäncke, L.: Lehrbuch Kognitive Neurowissenschaften. Huber, Bern (2013)

    Google Scholar 

  15. Jäncke, L., Jordan, K.: Functional neuroanatomy of mental rotation performance. In: Mast, F.W., Jäncke, L. (eds.) Spatial Processing in Navigation, Imagery and Perception, pp. 183–207. Springer, New York (2007)

    Chapter  Google Scholar 

  16. Janata, P., Birk, J.L., van Horn, J.D., Leman, M., Tillmann, B., Bharucha, J.J.: The cortical topography of tonal structures underlying Western music. Science 298, 2167–2170 (2002)

    Article  Google Scholar 

  17. Jasper, H.H.: The ten-twenty electrode system of the international federation. Electroencephalogr. Clin. Neurophysiol. 10(2), 370–375 (1958)

    Article  Google Scholar 

  18. Knösche, T.R., Neuhaus, C., Haueisen, J., Alter, K., Maess, B., Witte, O.W., Friederici, A.D.: Perception of phrase structure in music. Hum. Brain Mapp. 24(4), 259–273 (2005)

    Article  Google Scholar 

  19. Köchli, V.D., Marincek, B.: Wie funktioniert MRI?. Springer, Berlin (1998)

    Book  Google Scholar 

  20. Koelsch, S.: Music-syntactic processing and auditory memory: similarities and differences between ERAN and MMN. Psychophysiology 46, 179–190 (2009)

    Article  Google Scholar 

  21. Koelsch, S., Schröger, E., Tervaniemi, M.: Superior pre-attentive auditory processing in musicians. NeuroReport 10, 1309–1313 (1999)

    Article  Google Scholar 

  22. Koelsch, S., Kasper, E., Sammler, D., Schulze, K., Gunter, T., Friederici, A.D.: Music, language and meaning: brain signatures of semantic processing. Nat. Neurosci. 7, 302–307 (2004)

    Article  Google Scholar 

  23. Kohlmetz, C., Kopiez, R., Altenmüller, E.: Stability of motor programs during a state of meditation: Electrocortical activity in a pianist playing ‘Vexations’ by Erik Satie continuously for 28 hours. Psychol. Music 31(2), 173–186 (2003)

    Article  Google Scholar 

  24. Kujala, T., Näätänen, R.: The mismatch negativity in evaluating cental auditory dysfunction in dyslexia. Neurosci. Biobehav. Rev. 25(6), 535–543 (2001)

    Article  Google Scholar 

  25. Kutas, M., Hillyard, S.A.: Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207, 203–208 (1980)

    Article  Google Scholar 

  26. Launay, J., Dean, R.T., Bailes, F.: Rapid learning of associations between sound and action through observed movement. A TMS study. Psychomusicology 26(1), 35–42 (2016)

    Article  Google Scholar 

  27. Leman, M.: Relevance of neuromusicology for music research. J. New Music Res. 28(3), 186–199 (1999)

    Article  Google Scholar 

  28. Limb, C.J., Braun, A.R.: Neural substrates of spontaneous musical performance: an fMRI study of Jazz improvisation. PLoS One 3(2), e1679 (11 pages) (2008)

    Google Scholar 

  29. Logothetis, N.K.: What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008)

    Article  Google Scholar 

  30. Maguire, E.A., Gadian, D.G., Johnsrude, I.S., Good, C.D., Ashburner, J., Frackowiak, R.S.J., Frith, C.D.: Navigation-related structural change in the hippocampi of taxi drivers. PNAS 98(8), 4398–4403 (2000)

    Google Scholar 

  31. Mueller, K., Mildner, T., Fritz, T., Lepsien, J., Schwarzbauer, C., Schroeter, M.L., Möller, H.E.: Investigating brain response to music: a comparison of different fMRI acquisition schemes. NeuroImage 54, 337–343 (2011)

    Article  Google Scholar 

  32. Münte, T.F., Altenmüller, E., Jäncke, L.: The musician’s brain as a model of neuroplasticity. Nat. Rev. Neurosci. 3, 473–478 (2002)

    Google Scholar 

  33. Musacchia, G., Sams, M., Skoe, E., Kraus, N.: Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. PNAS 104(40), 15894–15898 (2007)

    Article  Google Scholar 

  34. Neisser, U.: Cognitive Psychology. Meredith, New York (1967)

    Google Scholar 

  35. Neuhaus, C., Knösche, T.R., Friederici, A.D.: Effects of musical expertise and boundary markers on phrase perception in music. J. Cogn. Neurosci. 18(3), 472–493 (2006)

    Article  Google Scholar 

  36. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87, 9868–9872 (1990)

    Article  Google Scholar 

  37. Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L.E., Hoke, M.: Increased auditory cortical representation in musicians. Nature 392, 811–814 (1998)

    Article  Google Scholar 

  38. Pantev, C., Roberts, L.E., Schulz, M., Engelien, A., Ross, B.: Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport 12(1), 169–174 (2001)

    Article  Google Scholar 

  39. Park, J.L., Fairweather, M.M., Donaldson, D.I.: Making the case for mobile cognition: EEG and sports performance. Neurosci. Biobehav. Rev. 52, 117–130 (2015)

    Article  Google Scholar 

  40. Petsche, H.: Approaches to verbal, visual and musical creativity by EEG coherence analysis. Int. J. Psychophysiol. 24, 145–159 (1996)

    Article  Google Scholar 

  41. Pylyshyn, Z.: Return of the mental image: are there really pictures in the brain? Trends Cogn. Sci. 7(3), 113–118 (2003)

    Article  Google Scholar 

  42. Révész, G.: Tonpsychologie. Voss, Leipzig (1913)

    Google Scholar 

  43. Rösler, F.: Statistische Verarbeitung von Biosignalen: Die Quantifizierung hirnelektrischer Signale. In: Baumann, U., et al. (eds.) Klinische Psychologie: Trends in Forschung und Praxis 3, pp. 112–156. Huber, Bern (1980)

    Google Scholar 

  44. Rouget, G.: Music and trance. A theory of the relations between music and possession. Chicago University Press, Chicago (1985)

    Google Scholar 

  45. Rumelhart, D.E., Norman, D.A.: Representation in memory. Stevens Handbook of Experimental Psychology 2, 2nd edn, pp. 511–587. Wiley, New York (1988)

    Google Scholar 

  46. Sagiv, N., Bentin, S.: Structural encoding of human and schematic faces: holistic and part-based processes. J. Cogn. Neurosci. 13(7), 937–951 (2001)

    Article  Google Scholar 

  47. Schneider, A.: Foundations of systematic musicology: a study in history and theory. In: Schneider, A. (ed.) Systematic and Comparative Musicology: Concepts, Methods, Findings, pp. 11–61. Peter Lang, Frankfurt am Main (2008)

    Google Scholar 

  48. Shepard, R.N., Metzler, J.: Mental rotation of three-dimensional objects. Science 171, 701–703 (1971)

    Article  Google Scholar 

  49. Siedentopf, C.M.: (Internet source) University of Innsbruck, Austria (2013). www.fMRI-easy.de

  50. Sigalovsky, I.S., Melcher, J.R.: Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers. Hear. Res. 215(1–2), 67–76 (2006)

    Article  Google Scholar 

  51. Steinhauer, K., Alter, K., Friederici, A.D.: Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nat. Neurosci. 2(2), 191–196 (1999)

    Article  Google Scholar 

  52. Stupacher, J., Hove, M.J., Novembre, G., Schütz-Bosbach, S., Keller, P.E.: Musical groove modulates motor cortex excitability: a TMS investigation. Brain Cogn. 82, 127–136 (2013)

    Article  Google Scholar 

  53. Talairach, J., Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme Medical Publishers, New York (1988)

    Google Scholar 

  54. Tayah, T.F., Abou-Khalil, B., Gilliam, F.G., Knowlton, R.C., Wushensky, C.A., Gallagher, M.J.: Musicogenic seizures can arise from multiple temporal lobe foci: intracranial EEG analyses of three patients. Epilepsia 47, 1402–1406 (2006)

    Article  Google Scholar 

  55. Tervaniemi, M., van Zuijen, T.L.: Methodologies of brain research in cognitive musicology. J. New Music Res. 28(3), 200–208 (1999)

    Article  Google Scholar 

  56. Thompson, T., Steffert, T., Ros, T., Leach, J., Gruzelier, J.: EEG applications for sport and performance. Methods 45, 279–288 (2008)

    Article  Google Scholar 

  57. Tiitinen, H., Virtanen, J., Ilmoniemi, R.J., Kamppuri, J., Ollikainen, M., Ruohonen, J., Näätänen, R.: Separation of contamination caused by coil clicks from responses elicited by transcranial magnetic stimulation. Clin. Neurophysiol. 110, 982–985 (1999)

    Article  Google Scholar 

  58. Wagemans, J., Vertraten, F.A.J., He, S.: Editorial—beyond the decade of the brain: towards a functional neuroanatomy of the mind. Acta Psychol. 107, 1–7 (2001)

    Article  Google Scholar 

  59. Warren, J.D., Uppenkamp, S., Patterson, R.D., Griffiths, T.D.: Separating pitch chroma and pitch height in the human brain. PNAS 100(17), 10038–10042 (2003)

    Article  Google Scholar 

  60. Zatorre, R.J., Belin, P.: Spectral and temporal processing in human auditory cortex. Cereb. Cortex 11, 946–953 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Neuhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Neuhaus, C. (2017). Methods in Neuromusicology: Principles, Trends, Examples and the Pros and Cons. In: Schneider, A. (eds) Studies in Musical Acoustics and Psychoacoustics. Current Research in Systematic Musicology, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-47292-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47292-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47291-1

  • Online ISBN: 978-3-319-47292-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics