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1 ETH Zürich, Zürich, Switzerland
{jsch,pomarc}@inf.ethz.ch

2 UNC Chapel Hill, Chapel Hill, USA
{ezheng,jmf}@cs.unc.edu

3 Microsoft, Redmond, USA

Abstract. This work presents a Multi-View Stereo system for robust
and efficient dense modeling from unstructured image collections. Our
core contributions are the joint estimation of depth and normal infor-
mation, pixelwise view selection using photometric and geometric pri-
ors, and a multi-view geometric consistency term for the simultaneous
refinement and image-based depth and normal fusion. Experiments on
benchmarks and large-scale Internet photo collections demonstrate state-
of-the-art performance in terms of accuracy, completeness, and efficiency.

1 Introduction

Large-scale 3D reconstruction from Internet photos has seen a tremendous evo-
lution in sparse modeling using Structure-from-Motion (SfM) [1–8] and in dense
modeling using Multi-View Stereo (MVS) [9–15]. Many applications benefit from
a dense scene representation, e.g.,, classification [16], image-based rendering [17],
localization [18], etc. Despite the widespread use of MVS, the efficient and robust
estimation of accurate, complete, and aesthetically pleasing dense models in
uncontrolled environments remains a challenging task. Dense pixelwise corre-
spondence search is the core problem of stereo methods. Recovering correct cor-
respondence is challenging even in controlled environments with known viewing
geometry and illumination. In uncontrolled settings, e.g.,, where the input con-
sists of crowd-sourced images, it is crucial to account for various factors, such as
heterogeneous resolution and illumination, scene variability, unstructured view-
ing geometry, and mis-registered views.

Our proposed approach improves the state of the art in dense reconstruc-
tion for unstructured images. This work leverages the optimization framework
by Zheng et al. [14] to propose the following core contributions: (1) Pixelwise
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Fig. 1. Reconstructions for Louvre, Todai-ji, Paris Opera, and Astronomical Clock.

normal estimation embedded into an improved PatchMatch sampling scheme.
(2) Pixelwise view selection using triangulation angle, incident angle, and image
resolution-based geometric priors. (3) Integration of a “temporal” view selection
smoothness term. (4) Adaptive window support through bilateral photometric
consistency for improved occlusion boundary behavior. (5) Introduction of a
multi-view geometric consistency term for simultaneous depth/normal estima-
tion and image-based fusion. (6) Reliable depth/normal filtering and fusion.
Outlier-free and accurate depth/normal estimates further allow for direct mesh-
ing of the resulting point cloud. We achieve state-of-the-art results on bench-
marks (Middlebury [19], Strecha [20]). To demonstrate the advantages of our
method in a more challenging setting, we process SfM models of a world-scale
Internet dataset [5]. The entire algorithm is released to the public as an open-
source implementation as part of [8] at https://github.com/colmap/colmap.

2 Related Work

Stereo methods have advanced in terms of accuracy, completeness, scala-
bility, and benchmarking – from the minimal stereo setup with two views
[21–24] to multi-view methods [9,10,14,15,25–28]. Furthermore, the joint esti-
mation of semantics [29], dynamic scene reconstruction [30–34], and benchmark-
ing [12,19,20,23]. Our method performs MVS with pixelwise view selection for
depth/normal estimation and fusion. Here, we only review the most related
approaches, within the large body of research in multi-view and two-view stereo.

MVS leverages multiple views to overcome the inherent occlusion prob-
lems of two-view approaches [35–37]. Accordingly, view selection plays a crucial
role in the effectiveness of MVS. Kang et al. [38] heuristically select the best
views with minimal cost (usually 50 %) for computing the depth of each pixel.
Strecha et al. [39,40] probabilistically model scene visibility combined with a
local depth smoothness assumption [39] in a Markov Random Field for pixel-
wise view selection. Different from our approach, their method is prohibitive in
memory usage and does neither include normal estimation nor photometric and
geometric priors for view selection. Gallup et al. [41] select different views and
resolutions on a per-pixel basis to achieve a constant depth error. In contrast,
our method simultaneously considers a variety of photometric and geometric pri-
ors improving upon the robustness and accuracy of the recently proposed depth
estimation framework by Zheng et al. [14]. Their method is most closely related
to our approach and is reviewed in more detail in Sect. 3.

https://github.com/colmap/colmap
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MVS methods commonly use a fronto-parallel scene structure assumption.
Gallup et al. [42] observed the distortion of the cost function caused by structure
that deviates from this prior and combats it by using multiple sweeping directions
deduced from the sparse reconstruction. Earlier approaches [43–45] similarly
account for the surface normal in stereo matching. Recently, Bleyer et al. [46] use
PatchMatch to estimate per-pixel normals to compensate for the distortion of the
cost function. In contrast to these approaches, we propose to estimate normals
not in isolation but also considering the photometric and geometric constraints
guiding the matchabilty of surface texture and its accuracy. By probabilistically
modeling the contribution of individual viewing rays towards reliable surface
recovery, we achieve significantly improved depth and normal estimates.

Depth map fusion integrates multiple depth maps into a unified and aug-
mented scene representation while mitigating any inconsistencies among indi-
vidual estimates. Jancoseck and Pajdla [28] fuses multiple depth estimates into
a surface and, by evaluating visibility in 3D space, they also attempt to recon-
struct parts that are not directly supported by depth measurements. In con-
trast, our method aims at directly maximizing the estimated surface support
in the depth maps and achieves higher completeness and accuracy (see Sect. 5).
Goesele et al. [47] propose a method that explicitly targets at the reconstruction
from crowd-sourced images. They first select camera clusters for each surface and
adjust their resolution to the smallest common resolution. For depth estimation,
they then use the four most suitable images for each pixel. As already noted in
Zheng et al. [14], this early pre-selection of reduced camera clusters may lead to
less complete results and is sensitive to noise. Our method avoids this restrictive
selection scheme by allowing dataset-wide, pixelwise sampling for view selection.
Zach [48] proposed a variational depth map formulation that enabled parallelized
computation on the GPU. However, their volumetric approach imposes substan-
tial memory requirements and is prohibitive for the large-scale scenes targeted
by our method. Beyond these methods, there are several large-scale dense recon-
struction and fusion methods for crowd-sourced images, e.g.,, Furukawa et al.
[10] and Gallup et al. [49,50], who all perform heuristic pre-selection of views,
which leads to reduced completeness and accuracy as compared to our method.

3 Review of Joint View Selection and Depth Estimation

This section reviews the framework by Zheng et al. [14] to introduce notation
and context for our contributions. Since their method processes each row/column
independently, we limit the description to a single image row with l as the column
index. Their method estimates the depth θl for a pixel in the reference image
Xref from a set of unstructured source images Xsrc = {Xm | m = 1 . . . M}. The
estimate θl maximizes the color similarity between a patch Xref

l in the reference
image and homography-warped patches Xm

l in non-occluded source images. The
binary indicator variable Zm

l ∈ {0, 1} defines the set of non-occluded source
images as X̄src

l = {Xm | Zm
l = 1}. To sample X̄src

l , they infer the probability
that the reference patch Xref

l at depth θl is visible at the source patch Xm
l using
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P (Xm
l |Zm

l , θl) =

{
1

NA exp
(
− (1−ρm

l (θl))
2

2σ2
ρ

)
if Zm

l = 1
1
N U if Zm

l = 0,
(1)

where A =
∫ 1

−1
exp{− (1−ρ)2

2σ2
ρ

}dρ and N is a constant canceling out in the infer-
ence. In the case of occlusion, the color distributions of the two patches are unre-
lated and follow the uniform distribution U in the range [−1, 1] with probability
density 0.5. Otherwise, ρm

l describes the color similarity between the reference
and source patch based on normalized cross-correlation (NCC) using fronto-
parallel homography warping. The variable σρ determines a soft threshold for
ρm

l on the reference patch being visible in the source image. The state-transition
matrix from the preceding pixel l − 1 to the current pixel l is P (Zm

l |Zm
l−1) =( γ 1−γ

1−γ γ

)
and encourages spatially smooth occlusion indicators, where a larger

γ enforces neighboring pixels to have more similar indicators. Given reference
and source images X = {Xref,Xsrc}, the inference problem then boils down to
recover, for all L pixels in the reference image, the depths θ = {θl | l = 1 . . . L}
and the occlusion indicators Z = {Zm

l | l = 1 . . . L, m = 1 . . . M} from the
posterior distribution P (Z,θ|X) with a uniform prior P (θ). To solve the com-
putationally infeasible Bayesian approach of first computing the joint probability

P (X,Z,θ) =
L∏

l=1

M∏
m=1

[P (Zm
l |Zm

l−1)P (Xm
l |Zm

l , θl)] (2)

and then normalizing over P (X), Zheng et al. use variational inference the-
ory to develop a framework that is a variant of the generalized expectation-
maximization (GEM) algorithm [51]. For the inference of Z in the hidden
Markov-Chain, the forward-backward algorithm is used in the E step of GEM.
PatchMatch-inspired [46] sampling serves as an efficient scheme for the inference
of θ in the M step of GEM. Their method iteratively solves for Z with fixed θ and
vice versa using interleaved row-/columnwise propagation. Full depth inference

θoptl = argmin
θ∗

l

∑M

m=1
Pl(m)(1 − ρm

l (θ∗
l )) (3)

has high computational cost if M is large as PatchMatch requires the NCC to be
computed many times. The value Pl(m) = q(Zm

l =1)
∑M

m=1 q(Zm
l =1)

denotes the probability
of the patch in source image m being similar to the reference patch, while q(Z)
is an approximation of the real posterior P (Z). Source images with small Pl(m)
are non-informative for the depth inference, hence Zheng et al. propose a Monte
Carlo based approximation of θoptl for view selection

θ̂optl = argmin
θ∗

l

1
|S|

∑
m∈S

(1 − ρm
l (θ∗

l )) (4)

by sampling a subset of images S ⊂ {1 . . . M} from the distribution Pl(m) and
hence only computing the NCC for the most similar source images.
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4 Algorithm

In this section, we describe our novel algorithm that leverages the optimization
framework reviewed in the previous section. We first present the individual terms
of the proposed likelihood function, while Sect. 4.6 explains their integration into
the overall optimization framework.

4.1 Normal Estimation

Zheng et al. [14] map between the reference and source images using fronto-
parallel homographies leading to artifacts for oblique structures [42]. In contrast,
we estimate per-pixel depth θl and normals nl ∈ R

3, ‖nl‖ = 1. A patch at
xl ∈ P

2 in the reference image warps to a source patch at xm
l ∈ P

2 using
xm

l = Hlxl with Hl = Km(Rm − d−1
l tmnT

l )K−1. Here, Rm ∈ SO(3) and
tm ∈ R

3 define the relative transformation from the reference to the source
camera frame. K and Km denote the calibration of the reference and source
images, respectively, and dl = nT

l pl is the orthogonal distance from the reference
image to the plane at the point pl = θlK

−1xl.
Given no knowledge of the scene, we assume a uniform prior P (N) in the

inference of the normals N = {nl | l = 1 . . . L}. Estimating N requires to change
the terms P (Xm

l |Zm
l , θl) and Pl(m) from Eqs. (1) and (4) to also depend on N ,

as the color similarity ρm
l is now based on slanted rather than fronto-parallel

homographies. Consequently, the optimal depth and normal are chosen as

(θ̂optl , n̂opt
l ) = argmin

θ∗
l ,n∗

l

1
|S|

∑
m∈S

(1 − ρm
l (θ∗

l ,n∗
l )). (5)

To sample unbiased random normals in PatchMatch, we follow the approach by
Galliani et al. [15]. With the additional two unknown normal parameters, the num-
ber of unknowns per pixel in the M step of GEM increases from one to three. While
this in theory requires PatchMatch to generate many more samples, we propose
an efficient propagation scheme that maintains the convergence rate of depth-only
inference. Since depth θl and normal nl define a local planar surface in 3D, we prop-
agate the depth θprpl−1 of the intersection of the ray of the current pixel xl with the
local surface of the previous pixel (θl−1,nl−1). This exploits first-order smooth-
ness of the surface (cf. [52]) and thereby drastically speeds up the optimization
since correct depths propagate more quickly along the surface. Moreover, different
from the typical iterative refinement of normals using bisection as an intermediate
step between full sweeps of propagations (cf. [15,46]), we generate a small set of
additional plane hypotheses at each propagation step. We observe that the current
best depth and normal parameters can have the following states: neither of them,
one of them, or both of them have the optimal solution or are close to it. By com-
bining random and perturbed depths with current best normals and vice versa, we
increase the chance of sampling the correct solution. More formally, at each step in
PatchMatch, we choose the current best estimate for pixel l according to Eq. (4)
from the set of hypotheses



506 J.L. Schönberger et al.

{(θl,nl), (θ
prp
l−1,nl−1), (θrndl ,nl), (θl,n

rnd
l ), (θrndl ,nrnd

l ), (θprtl ,nl), (θl,n
prt
l )},

(6)
where θrndl and nrnd

l denote randomly generated samples. To refine the current
parameters when they are close to the optimal solution, we perturb the current
estimate as θprtl = (1 ± ε)θl and nprt

l = Rεnl. The variable ε describes a small
depth perturbation, and the rotation matrix Rε ∈ SO(3) perturbs the normal
direction by a small angle subject to pT

l nprt
l < 0. Normal estimation improves

both the reconstruction completeness and accuracy, while the new sampling
scheme leads to both fast convergence and more accurate estimates (Sect. 5).

4.2 Geometric Priors for View Selection

This section describes how to incorporate geometric priors in the pixelwise view
selection for improved robustness in particular for unstructured imagery. On a
high level, the proposed priors encourage the sampling of source images with suf-
ficient baseline (Triangulation Prior), similar resolution (Resolution Prior), and
non-oblique viewing direction (Incident Prior). In contrast to prior work (e.g.,
[10,47,49]), which decouples inference and per-image geometric priors by pre-
selecting source images, we integrate geometric priors on a per-pixel basis into
the inference. The motivation for per-pixel geometric priors is similar to inferring
per-pixel occlusion indicators Z. Since the pre-selection of source images is based
on a sparse and therefore incomplete scene representation, the selected source
views are often sub-optimal. Occlusion boundaries, triangulation angles, relative
image resolution, and incident angle can vary significantly between a single pair
of reference and source images (Fig. 2). Incorporating geometric priors in addi-
tion to the photometric occlusion indicators Z leads to a more comprehensive
and robust pixelwise view selection. In the following, we detail the proposed
priors and explain their integration into the optimization framework.

Triangulation Prior. Zheng et al. [14] sample source images purely based
on color similarity. Consequently, the more similar the reference patch is to the
source patch, the higher the selection probability in the view sampling. Nat-
urally, image pairs with small viewpoint change, which coincides with small
baseline, have high color similarity. However, image pairs with zero baseline

Fig. 2. Left: Illustration of geometric priors for reference view (R) and three source
views (1–3). View 1 has similar resolution (red), and good triangulation (green) and
incident angle (blue), while view 2 is oblique and has lower resolution. View 3 cannot
see the patch. Right: Geometric prior likelihood functions with different parameters.
(Color figure online)
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do not carry information for depth inference, because reconstructed points
can arbitrarily move along the viewing ray without changing the color simi-
larity. Pure photometric view selection favors to sample these uninformative
views. To eliminate this degenerate case, we calculate the triangulation angle
αm

l = cos−1 (pl−cm)T pl

‖pl−cm‖‖pl‖ with cm = −(Rm)T tm and αm
l ∈ [0, π) between two

intersecting viewing rays as a measure of the stability of the reconstructed
point pl. Empirically, we choose the following likelihood function P (αm

l ) =
1 − (min(ᾱ,αm

l )−ᾱ)2

ᾱ2 to describe how informative a source image is for recon-
structing the correct point. Intuitively, this function assigns low likelihood to
source images for which the triangulation angle is below an a priori threshold
ᾱ. Otherwise, no additional view selection preference is imposed (see Fig. 2).

Resolution Prior. Unstructured datasets usually contain images captured by
a multitude of camera types under diverse viewing geometry. As a consequence,
images capture scene objects in a wide range of resolutions. To avoid under-
and oversampling in computing ρm

l , the patches in the reference and source
image should have similar size and shape [47]. Similar size is favorable as it
avoids comparing images captured at vastly different resolutions, e.g.,, due to
different zoom factors or distance to the object. Similar shape avoids significantly
distorted source patches caused by different viewing directions. In the case of
different shape, areas within the same source patch have different sampling rates.
An approximate measure of the relative size and shape between the reference
and source patch is βm

l = bl

bm
l

∈ R
+, where bl and bm

l denote the areas covered
by the corresponding patches. In our implementation, the reference patch is
always square. If the size and shape of the patches is similar, βm

l is close to the
value 1. To quantify the similarity in resolution between two images, we propose
the likelihood function P (βm

l ) = min(βm
l , (βm

l )−1) and integrate it into Pl(m).
Note that, at increased computational cost, undersampling could alternatively
be handled by adaptive resampling of the source image patch.

Incident Prior. The inferred per-pixel normals provide geometric constraints
on the solution space that we encode in the form of a prior. The estimated
plane restricts the possible space of source camera locations and orientations. By
construction, the camera location can only lie in the positive half-space defined
by the plane (θl,n

m
l ), while the camera viewing direction must face towards

the opposite normal direction. Otherwise, it is geometrically impossible for the
camera to observe the surface. To satisfy this geometric visibility constraint, the
incident angle of the source camera κm

l = cos−1 (pl−cm)T nm
l

‖pl−cm‖‖nm
l ‖ with κm

l ∈ [0, π)
must be in the interval 0 ≤ κm

l < π
2 . In our method, the likelihood function

P (κm
l ) = exp(−κm

l
2

2σ2
κ

) encodes the belief in whether this geometric constraint is
satisfied. This associates some belief with a view even in the case where κm

l ≥ π
2 .

The reason for this is, that in the initial inference stage, the variables θl and nm
l

are unknown and hence the geometric constraints are likely not yet correct.

Integration. Figure 2 visualizes the geometric priors, and Fig. 4 shows examples
of specific priors over all reference image pixels. We integrate the priors into the
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inference as additional terms in the Monte-Carlo view sampling distribution

Pl(m) =
q(Zm

l = 1)q(αm
l )q(βm

l )q(κm
l )∑M

m=1 q(Zm
l = 1)q(αm

l )q(βm
l )q(κm

l )
, (7)

where q(αm
l ), q(βm

l ), q(κm
l ) are approximations during the variational inference,

in the sense that they minimize the KL-divergence to the real posterior [53]. The
distributions need no normalization in the inference because we solely use them
as modulators for the sampling distribution Pl(m). This formulation assumes
statistical independence of the individual priors as a simplifying approximation,
which makes the optimization feasible using relatively simple models for well-
understood geometric relations. Intuitively, non-occluded images with sufficient
baseline, similar resolution, and non-oblique viewing direction are favored in
the view selection. Section 5 evaluates the priors in detail and shows how they
improve the reconstruction robustness especially for unstructured datasets.

4.3 View Selection Smoothness

The graphical model associated with the likelihood function in Eq. (2) uses state-
transition probabilities to model spatial view selection smoothness for neighbor-
ing pixels in the propagation direction. Due to the interleaved inference using
alternating propagation directions, Zm

l suffers from oscillation, leading to strip-
ing effects as shown in Fig. 5. To reduce the oscillation effect of Zm

l,t in iteration t,
we insert an additional “temporal” smoothness factor into the graphical model.
In this new model, the state of Zm

l,t depends not only on the state of its neigh-
boring pixel l − 1 but also on its own state in the previous iteration t − 1. The
temporal state-transition is defined as P (Zm

l,t|Zm
l,t−1) =

(
λt 1−λt

1−λt λt

)
, where a

larger λt enforces greater temporal smoothness during the optimization. In fact,
as the optimization progresses from t = 1 . . . T , the value of the estimated Zm

l,t−1

should stabilize around the optimal solution. Therefore, we adaptively increase
the state-transition probability as λt = t

2T + 0.5, i.e.,, the inferred Zm
l,t in itera-

tions t = 1 and t = T −1 have maximal and minimal influence on the final value
Zm

l,T , respectively. The two state-transitions are jointly modeled as

P (Zm
l,t|Zm

l−1,t, Z
m
l,t−1) = P (Zm

l,t|Zm
l−1,t)P (Zm

l,t|Zm
l,t−1). (8)

Figure 5 shows the evolution of Zm
l,t during the optimization and demonstrates

the reduced oscillation, which effectively also leads to less noisy view sampling.

4.4 Photometric Consistency

Zheng et al. [14] employ NCC to compute the color similarity ρm
l . NCC is

statistically optimal for Gaussian noise but is especially vulnerable to producing
blurred depth discontinuities [54]. Inspired by [46,55], we diminish these artifacts
by using a bilaterally weighted adaption of NCC. We compute ρm

l between a
reference patch wl at xl with a corresponding source patch wm

l at xm
l as

ρm
l =

covw(wl,w
m
l )√

covw(wl,wl) covw(wm
l ,wm

l )
(9)
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where covw(x,y) = Ew(x − Ew(x)) Ew(y − Ew(y)) is the weighted covariance
and Ew(x) =

∑
i wixi/

∑
i wi is the weighted average. The per-pixel weight

wi = exp(−Δgi

2σ2
g

− Δxi

2σ2
x
) indicates the likelihood that a pixel i in the local patch

belongs to the same plane as its center pixel at l. It is a function of the grayscale
color distance Δgi = |gi − gl| and the spatial distance Δxi = ‖xi − xl‖, whose
importance is relatively scaled by the Gaussian dispersion σg and σx. By integrat-
ing the bilaterally weighted NCC into the term P (Xm

l |Zm
l , θl,nl), our method

achieves more accurate results at occlusion boundaries, as shown in Sect. 5.

4.5 Geometric Consistency

MVS typically suffers from gross outliers due to noise, ambiguities, occlusions,
etc. In these cases, the photometric consistency for different hypotheses is
ambiguous as large depth variations induce only small cost changes. Spatial
smoothness constraints can often reduce but not fully eliminate the resulting
artifacts. A popular approach to filter these outliers is to enforce multi-view
depth coherence through left-right consistency checks as a post-processing step
[15,46].

In contrast to most approaches, we integrate multi-view geometric consis-
tency constraints into the inference to increase both the completeness and the
accuracy. Similar to Zhang et al. [56], we infer the best depth and normal based
on both photometric and geometric consistency in multiple views. Since photo-
metric ambiguities are usually unique to individual views (except textureless sur-
faces), exploiting the information from multiple views can often help to pinpoint
the right solution. We compute the geometric consistency between two views
as the forward-backward reprojection error ψm

l = ‖xl − Hm
l Hlxl‖, where Hm

l

denotes the projective backward transformation from the source to the reference
image. It is composed from the source image estimates (θm

l ,nm
l ) interpolated at

the forward projection xm
l = Hlxl. Intuitively, the estimated depths and nor-

mals are consistent if the reprojection error ψm
l is small. Due to computational

constraints, we cannot consider the occlusion indicators in the source image for
the backward projection. Hence, to handle occlusion in the source image, we
employ a robustified geometric cost in ξm

l = 1 − ρm
l + η min (ψm

l , ψmax) using
η = 0.5 as a constant regularizer and ψmax = 3px as the maximum forward-
backward reprojection error. Then, the optimal depth and normal is chosen as

(θ̂optl , n̂opt
l ) = argmin

θ∗
l ,n∗

l

1
|S|

∑
m∈S

ξm
l (θ∗

l ,n∗
l ). (10)

The geometric consistency term is modeled as P (θl,nl|θm
l ,nm

l ) in the likelihood
function, and Sect. 4.6 shows how to integrate its inference into the overall opti-
mization framework. Experiments in Sect. 5 demonstrate how this formulation
improves both the accuracy and the completeness of the results.
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4.6 Integration

This section contextualizes the individual terms of the proposed algorithm by
explaining their integration into the overall optimization framework [14]. The
joint likelihood function P (X,Z, θ,N) of our proposed algorithm is defined as

L∏
l=1

M∏
m=1

[P (Zm
l,t|Zm

l−1,t, Z
m
l,t−1)P (Xm

l |Zm
l , θl,nl)P (θl,nl|θm

l ,nm
l )]

over the input images X, the occlusion indicators Z, the depths θ, the normals
N , and is composed of several individual terms. First, the spatial and tempo-
ral smoothness term P (Zm

l,t|Zm
l−1,t, Z

m
l,t−1) (Sect. 4.3) enforces spatially smooth

occlusion maps with reduced temporal oscillation during the optimization. Sec-
ond, the photometric consistency term P (Xm

l |Zm
l , θl,nl) uses bilateral NCC

(Sect. 4.4) and a slanted plane-induced homography (Sect. 4.1) to compute the
color similarity ρm

l between the reference and source images. Third, the geomet-
ric consistency term P (θl,nl|θm

l ,nm
l ) to enforce multi-view consistent depth and

normal estimates. The photometric and geometric consistency terms are com-
puted using Monte-Carlo view sampling from the distribution Pl(m) in Eq. (7).
The distribution encourages the sampling of non-occluded source images with
informative and non-degenerate viewing geometry (Sect. 4.2).

Analog to Zheng et al. [14], we factorize the real posterior P (Z,θ,N |X) in
its approximation q(Z,θ,N) = q(Z)q(θ,N) [53]. Furthermore, for tractability,
we constrain q(θ,N) to the family of Kronecker delta functions q(θl,nl) =
δ(θl=θ∗

l ,nl=n∗
l ). Variational inference then aims to infer the optimal member

of the family of approximate posteriors to find the optimal Z,θ,N . The validity
of using GEM for this type of problem has already been shown in [14,51]. To
infer q(Zm

l,t) in iteration t of the E step of GEM, we employ the forward-backward
algorithm as

q(Zm
l,t) =

1
A

−→m(Zm
l,t)

←−m(Zm
l,t) (11)

with −→m(Zm
l,t) and ←−m(Zm

l,t) being the recursive forward and backward messages

−→m(Zm
l ) = P (Xm

l |Zm
l , θl,nl)

∑
Zm

l−1

−→m(Zm
l−1)P (Zm

l,t|Zm
l−1,t, Z

m
l,t−1) (12)

←−m(Zm
l ) =

∑
Zm

l+1

←−m(Zm
l+1)P (Xm

l+1|Zm
l+1, θl+1,nl+1)P (Zm

l,t|Zm
l+1,t, Z

m
l,t−1) (13)

using an uninformative prior −→m(Zm
0 ) = −→m(Zm

L+1) = 0.5. The variable q(Zm
l,t)

together with q(αm
l ), q(βm

l ), q(κm
l ) determine the view sampling distribution

Pl(m) used in the M step of GEM as defined in Eq. (7). The M step uses
PatchMatch propagation and sampling (Sect. 4.1) for choosing the optimal depth
and normal parameters over q(θl,nl). Since geometrically consistent depth and
normal inference is not feasible for all images simultaneously due to memory
constraints, we decompose the inference in two stages. In the first stage, we esti-
mate initial depths and normals for each image in the input set X according
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to Eq. (5). In the second stage, we use coordinate descent optimization to infer
geometrically consistent depths and normals according to Eq. (10) by keeping all
images but the current reference image as constant. We interleave the E and M
step in both stages using row- and column-wise propagation. Four propagations
in all directions denote a sweep. In the second stage, a single sweep defines a
coordinate descent step, i.e.,, we alternate between different reference images
after propagating through the four directions. Typically, the first stage con-
verges after I1 = 3 sweeps, while the second stage requires another I2 = 2 sweeps
through the entire image collection to reach a stable state. We refer the reader
to the supplementary material for an overview of the steps of our algorithm.

4.7 Filtering and Fusion

After describing the depth and normal inference, this section proposes a robust
method to filter any remaining outliers, e.g.,, in textureless sky regions. In addi-
tion to the benefits described previously, the photometric and geometric consis-
tency terms provide us with measures to robustly detect outliers at negligible
computational cost. An inlier observation should be both photometrically and
geometrically stable with support from multiple views. The sets

Spho
l = {xm

l | q(Zm
l ) > q̄Z} (14)

Sgeo
l = {xm

l | q(αm
l ) ≥ q̄α, q(βm

l ) ≥ q̄β , q(κm
l ) > q̄κ, ψm

l < ψmax} (15)

determine the photometric and geometric support of a reference image pixel xl.
To satisfy both constraints, we define the effective support of an observation as
Sl = {xm

l | xm
l ∈ Spho

l ,xm
l ∈ Sgeo

l } and filter any observations with |Sl| < s. In
all our experiments, we set s = 3, q̄Z = 0.5, q̄α = 1, q̄β = 0.5, and q̄κ = P (κ =
90◦). Figures 3 and 6 show examples of filtered depth and normal maps.

The collection of support sets S over the observations in all input images
defines a directed graph of consistent pixels. In this graph, pixels with sufficient
support are nodes, and directed edges point from a reference to a source image
pixel. Nodes are associated with depth and normal estimates and, together with

Fig. 3. Reconstruction results for South Building [29] and Fountain [20]. From left to
right: Depth map by Zheng et al. [14], then ours only with the photometric term, with
the photometric and geometric terms, and the final filtered depth and normal maps.
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the intrinsic and extrinsic calibration, edges define a projective transformation
from the reference to the source pixel. Our fusion finds clusters of consistent
pixels in this graph by initializing a new cluster using the node with maxi-
mum support |S| and recursively collecting connected nodes that satisfy three
constraints. Towards this goal, we project the first node into 3D to obtain the
location p0 and normal n0. For the first constraint, the projected depth θ̃0 of the
first node into the image of any other node in the cluster must be consistent with
the estimated depth θi of the other node such that |θ̃0−θi|

θ̃0
< εθ (cf. [57]). Second,

the normals of the two must be consistent such that 1 − nT
0 ni < εn. Third, the

reprojection error ψi of p0 w.r.t. the other node must be smaller than ψ̄. Note
that the graph can have loops, and therefore we only collect nodes once. In addi-
tion, multiple pixels in the same image can belong to the same cluster and, by
choosing ψ̄, we can control the resolution of the fused point cloud. When there
is no remaining node that satisfies the three constraints, we fuse the cluster’s
elements, if it has at least three elements. The fused point has median location
p̂j and mean normal nj over all cluster elements. The median location is used
to avoid artifacts when averaging over multiple neighboring pixels at large depth
discontinuities. Finally, we remove the fused nodes from the graph and initialize
a new cluster with maximum support |S| until the graph is empty. The resulting
point cloud can then be colored (e.g., [58]) for visualization purposes and, since
the points already have normals, we can directly apply meshing algorithms (e.g.,
Poisson reconstruction [59]) as an optional step.

5 Experiments

This section first demonstrates the benefits of the proposed contributions in iso-
lation. Following that, we compare to other methods and show state-of-the-art
results on both low- and high-resolution benchmark datasets. Finally, we eval-
uate the performance of our algorithm in the challenging setting of large-scale
Internet photo collections. The algorithm lends itself for massive parallelization
on the row- and column-wise propagation and the view level. In all our exper-
iments, we use a CUDA implementation of our algorithm on a Nvidia Titan X
GPU. We set γ = 0.999, leading to an average of one occlusion indicator state
change per 1000 pixels. Empirically, we choose σρ = 0.6, ᾱ = 1◦, and σk = 45◦.

Components. This paragraph shows the benefits of the individual components
in isolation based on the South Building dataset [29], which consists of 128
unstructured images with a resolution of 7MP. We obtain sparse reconstructions
using SfM [5]. For each reference view, we use all 127 images as source views with
an average runtime of 50 s per sweep. Normal Estimation: Fig. 3 shows depth
maps using fronto-parallel homographies (1st column) and with normal estima-
tion (2nd to 5th columns), which leads to increased completeness and accuracy
for depth inference of oblique scene elements, such as the ground. In addition, our
method estimates more accurate normals than standard PatchMatch (Fig. 5(b)).
Due to the proposed PatchMatch sampling scheme, our algorithm requires the



Pixelwise View Selection for Unstructured Multi-View Stereo 513

Fig. 4. Photometric and geometric priors for South Building dataset [29] between ref-
erence image (R) and each two selected source images (1–5).

same number sweeps to converge and only ≈25 % more runtime due to more
hypotheses as compared to Zheng et al. [14], who only estimate per-pixel depths.
Geometric Priors: Figure 4 demonstrates the benefit of each geometric prior.
We show the likelihood functions for the reference view against one representa-
tive source image. For all priors, we observe varying likelihood within the same
source image, underlining the benefit of pixel-wise view selection. The priors cor-
rectly downweigh the influence of source images with small triangulation angle,
low resolution, or occluded views. Selection Smoothness: Figure 5(a) shows that
our temporal smoothness term effectively mitigates the oscillation of the pure
spatial smoothness term. While the occlusion variables in the formulation by
Zheng et al. [14] oscillate depending on the propagation direction, in our method
they quickly converge in a stable state leading to more stable view sampling. Geo-
metric Consistency : Figure 3 demonstrates improved completeness when incor-
porating the geometric consistency term, and it also allows to reliably detect
outliers for practically outlier-free filtered results. To measure the quantitative
impact of our contributions, we obtain benchmark results by omitting a single
component or combinations of components from the formulation (Table 1). We
observe that each component is important to achieve the overall accuracy and
completeness of our method. For further evaluations and impressions of the ben-
efits of our method, we strongly encourage the reader to view the supplementary
material.

Fig. 5. (a) Comparison of spatial smoothness term [14] with our proposed spatial and
temporal smoothness term for the occlusion variables Z . Algorithm starts from the left
with the first sweep and is followed by consecutive sweeps to the right. (b) Estimated
depths and normals using standard PatchMatch propagation (cf. Fig. 3 for ours). (c)
Reference image with filtered depths and normals for crowd-sourced images
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Table 1. Strecha benchmark [20] with reported values from [60]. Ratio of pixels
with error less than 2 cm and 10 cm. Ours w/o normals (\N), geom. priors (\P),
temp. smoothness (\S), geom. consistency (\G), bilateral NCC (\B), and with all
components.

[14] [60] [9] [62] [61] [28] [15] \N \P \S \B \PSB \G Ours

Fountain 2 cm 0.769 0.754 0.731 0.712 0.732 0.824 0.693 0.799 0.824 0.825 0.826 0.817 0.804 0.827

10 cm 0.929 0.930 0.838 0.832 0.822 0.973 0.838 0.937 0.972 0.973 0.973 0.965 0.949 0.975

Herzjesu 2 cm 0.650 0.649 0.646 0.220 0.658 0.739 0.283 0.673 0.686 0.688 0.690 0.688 0.679 0.691

10 cm 0.844 0.848 0.836 0.501 0.852 0.923 0.455 0.901 0.928 0.927 0.929 0.921 0.907 0.931

Benchmarks. The Middlebury benchmark [23] consists of the Dino and Tem-
ple models captured at 640×480 under varying settings (Full, Ring, Sparse). For
each reference image, we use all views as source images at a runtime of ≈40 s per
view for the Full models with ≈ 300 images. We achieve excellent accuracy and
completeness on both models1. Specifically, using the standard settings, we rank
1st for Dino Full (tied) and Dino Sparse, while achieving competitive scores for
the Temple (4th for Full, 8th for Ring). Note that our method performs best
for higher resolutions, as normal estimation needs large patch sizes. Also, we
use basic Poisson meshing [59], underlining the highly accurate and outlier-free
depth/normal estimates produced by our method. The Strecha benchmark [20]
consists of high-resolution images with ground-truth, and we follow the evalua-
tion protocol of Hu and Mordohai [60]. Figure 3 shows outputs for the Fountain
dataset and, Table 1 lists the results quantifying both the accuracy and complete-
ness. To maintain comparability against Zheng et al. [14], we evaluate our raw
depth maps against the ground-truth. We produce significantly more accurate
and complete results than Zheng et al., and we outperform the other methods
in 3 of 4 categories, even though the results of [28,60,61] are evaluated based on
the projection of a 3D surface obtained through depth map fusion.

Fig. 6. Reference image with filtered depths and normals for crowd-sourced images.

1 Full results online at http://vision.middlebury.edu/mview/eval/.

http://vision.middlebury.edu/mview/eval/
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Internet Photos. We densely reconstruct models of 100M Internet photos
released by Heinly et al. [5,8] using a single machine with 4 Nvidia Titan X.
We process the 41 K images at a rate of 70 s per view using 2 threads per GPU
and finish after 4.2 days in addition to the 6 days needed for sparse modeling
using SfM. Whenever we reach the GPU memory limits, we select the most con-
nected source images ranked by the number of shared sparse points. Usually, this
limit is reached for ≈ 200 images, while image sizes vary from 0.01MP to 9MP.
The fusion and filtering steps consume negligible runtime. Figure 1 shows fused
point clouds, Figs. 6 and 5(c) show depth/normal maps, and the supplementary
material provides more results and comparisons against [9,10,47].

6 Conclusion

This work proposes a novel algorithm for robust and efficient dense reconstruc-
tion from unstructured image collections. Our method estimates accurate depth
and normal information using photometric and geometric information for pixel-
wise view selection and for image-based fusion and filtering. We achieve state-
of-the-art results on benchmarks and crowd-sourced data.
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