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Abstract. The heat kernel is a fundamental solution in mathematical
physics to distribution measurement of heat energy within a fixed region
over time, and due to its unique property of being invariant to isometric
transformations, the heat kernel has been an effective feature descrip-
tor for spectral shape analysis. The majority of prior heat kernel-based
strategies of building 3D shape representations fail to investigate the tem-
poral dynamics of heat flows on 3D shape surfaces over time. In this work,
we address the temporal dynamics of heat flows on 3D shapes using the
long-short term memory (LSTM). We guide 3D shape descriptors toward
discriminative representations by feeding heat distributions throughout
time as inputs to units of heat diffusion LSTM (HD-LSTM) blocks with a
supervised learning structure. We further extend HD-LSTM to a cross-
domain structure (CDHD-LSTM) for learning domain-invariant repre-
sentations of multi-view data. We evaluate the effectiveness of both
HD-LSTM and CDHD-LSTM on 3D shape retrieval and sketch-based
3D shape retrieval tasks respectively. Experimental results on McGill
dataset and SHREC 2014 dataset suggest that both methods can achieve
state-of-the-art performance.

Keywords: 3D shape retrieval - Recurrent neural network - Long-short
term memory - Heat kernel signature

1 Introduction

Researches on 3D-meshed surface models have been receiving exponentially
increasing attentions with the sustainability growing expectations on virtual
reality, which is believed to be the revolutionary technology that can completely
reshape our lives. In fact, virtual reality isn’t exclusive for gaming anymore, it
has already sprawled into many areas. For example, virtual reality movies are
becoming the mainstream with Hollywood directors. Since the virtual world is
established in a 3D space, researchers have been paying efforts to the develop-
ment of multiple areas of 3D computer vision, which covers 3D correspondence,
3D shape retrieval, 3D segmentation, etc. The performance of these 3D analysis
systems heavily rely on the quality of 3D shape representations, thus how to
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effectively describe a 3D shape in machine language is of premier importance for
3D shape analysis.

Popular strategies of building 3D shape representations mainly include the
projection-based approaches and the heat kernel-based approach. Intuitively,
the projection-based approaches aim to transform the 3D shape representation
problem into a well developed-image representation problem by projecting a 3D
shape from multiple viewpoints and consequently obtaining multiple projection
images, where either handcrafted features (e.g., scale invariant feature trans-
form (SIFT) [25]) or deep learning features (e.g., convolutional neural networks
(CNN) [22]) are used to represent these projection images. On the other hand,
the heat kernel-based approach estimates geometrical relationships between 3D
mesh points throughout sequential diffusion time. A typical example of the heat
kernel-based 3D shape representation is the heat kernel signature (HKS) [34].
Due to the unique property of the heat kernel, HKS is invariant to geometri-
cal transformations, however, the temporal information along the heat diffusion
time has not been utilized by HKS.

In this work, we aim to develop a new 3D shape representation by utilizing
the heat flows on 3D shape surfaces and the corresponding temporal dynamics
of the heat flows within the diffusion period. Inspired by the advancements of
deep learning techniques, e.g., CNN [22] and recurrent neural networks (RNN),
we learn the temporal dynamics of heat flows using the long-short term mem-
ory (LSTM) [15]. While RNN can in principle learn sequential data by storing
information of a recent time point with the internal memory, LSTM, as a special
type of RNN, is equipped with architecture that is capable of storing “long-term”
memories in addition to storing “short-term” memories. Thus, by learning the
heat flows with LSTM, we are able to extract joint information between dif-
fusion time-steps that are either consecutive or with a large interval. Figure 1
illustrates the pipeline of the HD-LSTM learning framework. We start by com-
puting the heat kernel features (i.e., HKS) from 3D shapes, and learn the heat
diffusion kernel distributions (shown in Fig.1) overall all sampling time-steps
through HD-LSTM, where the heat diffusion kernel distribution is the histogram
of heat diffusion values given a fixed time-step. We then guide the input features
towards discriminative 3D shape representations through a supervised LSTM
learning structure, where the category information of training samples are sup-
plied to the output end of LSTM in the form of discriminative vectors. When
the heat flows sequentially pass through the HD-LSTM, its “forget gate layer”
can selectively throw away the previous heat flow from the cell state, and deter-
mine how much we decide to update the current state value using the past data.
Benefiting from the easy generalization property of HD-LSTM, we extend HD-
LSTM to a cross-domain learning structure CDHD-LSTM, which minimizes the
cross-domain discrepancy by connecting HD-LSTM to a 3-layer neural network
and guiding same-category cross-domain data toward identical targets. Our con-
tributions are threefolds:
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Fig. 1. We discover the temporal dynamics of heat diffusions and correspondingly
propose HD-LSTM to learn discriminative 3D shape representations based on heat
diffusions.

o We explore the temporal dynamics of heat flows over multiple diffusion time-
steps, and we propose a novel deep learning 3D shape representation by learn-
ing sequential heat kernel features using HD-LSTM with a supervised struc-
ture.

e We extend the supervised HD-LSTM structure to a cross-domain setting,
and propose a cross-domain deep learning strategy CDHD-LSTM for learn-
ing domain-invariant representations to address the sketch-based 3D shape
retrieval problem.

e We conduct experiments on both 3D shape retrieval and sketch-based 3D
shape retrieval tasks to evaluate the effectiveness of HD-LSTM and CDHD-
LSTM. Experimental results demonstrate that both methods can achieve
state-of-the-art performance on popular benchmarks.

2 Related Works

The challenges for developing 3D shape representations include the complex-
ity of 3D models [35], structural variations of 3D models [5], noise, etc. There
are extensive investigations in the literature on the topic of building effective
3D shape representations to address these challenges. Early approaches mainly
rely on “handcrafted” features. One classical strategy is characterizing neighbor-
ing point signatures through shape distributions, including spin images [18] and
shape context [2], which are both invariant under rigid shape transformations.
Another approach is the point-based signature, which characterizes vertexes on
3D shape surfaces with vectors. Popular point-based signatures include the global
point signature (GPS) [28], whose vector components are obtained from scaled
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eigenfunctions of the Laplace-Beltrami operator, and HKS [34], which is obtained
by computing histograms of heat diffusions on shape surfaces. Some other shape
descriptors are designed based on geodesic distances [11,14]. Intuitively, geo-
desic distance-based methods are invariant under isometric deformations, how-
ever, they are sensitive to topological noise. While the aforementioned methods
operate directly on native 3D shapes (e.g., polygon meshes and point clouds),
some 3D shape representations are extended from well-established image repre-
sentation techniques, including the extension of SURF feature to 3D voxel grids
[21] and the extension of SIFT feature to represent 2D projection images of 3D
shapes [7] and some recent work that employ CNN to perform deep learning on
2D projection images [33,36]. In general, existing 3D shape representation learn-
ing approaches are based on the following taxonomy: (1) volumetric methods,
e.g., Wu et al. [38] and Sedaghat et al. [29]; (2) 2D projection methods, e.g.,
Maturana et al. [26], Su et al. [33] and Shi et al. [31]; and (3) shape distribu-
tion methods e.g., DeepShape [39], where our approach in this work belongs to
the third category. Beyond the regular 3D shape retrieval task, some studies,
including Su et al. [33], Wang et al. [36] and Zhu et al. [41], attempt to build
domain-invariant 3D shape representations to directly compare 3D shapes with
hand-drawn sketches.

With the inspiring victory of AphaGo [32] over the world champion Go player
Lee Sedol in recent days, the deep learning technology is stepping in public’s eyes
in a real sense. As one of the important deep learning techniques behind the vic-
tory of AlphaGo, CNN has already achieved many revolutionary successes in a
wide range of applications, e.g., image classification [22], recommender systems
[27] and human action recognition [16]. Also, some recent work employ CNN to
perform deep learning on 2D projection images of 3D shapes, so as to develop 3D
shape representations [33,36]. Different from feed-forward neural networks, RNN
builds an internal state that allows cycled signal flows within the neural network.
Benefiting from such a property, RNN is applicable of dealing with sequential
data, e.g., speech classification [13] and caption generation [20]. However, RNN
is practically hard to train due to the vanishing gradient problem [3]. In addi-
tion, RNN is incapable of dealing with long-term dependencies with a standard
structure. The LSTM architecture, as a special type of RNN, can avoid the van-
ishing gradient problem by performing gradient descent with back-propagation
through time [15], and it is also capable of learning long-term dependencies.
LSTM has demonstrated its capability for learning sequential data in tasks such
as image caption generation [17] and action recognition [9)].

Our approach is to utilize the favorable sequential data learning capability
of the LSTM architecture, aiming to explore the temporal dynamics of diffusion
flows on 3D shape surfaces. We guide LSTM with a supervised learning structure,
so that the learned 3D shape representations are discriminative. To our knowl-
edge, this is the first work that attempts to learn 3D shape representations with
a LSTM architecture.
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3 Heat Diffusion Long-Short Term Memory

3.1 Heat Diffusion on 3D Shape Surfaces

We start by revisiting some preliminary knowledge on the Laplace-Beltrami oper-

ator, the heat operator and heat kernel [34]. Let M denote a Riemannian man-

ifold, the heat diffusion process is governed by the Laplace-Beltrami operator of
w(w, t

AM:U’(uv t) - ot . (1)

It is verified that the Laplace-Beltrami operator of Axs and the heat operator

H,; satisfy the following relation:
H, = e 4, (2)

Since both operators share the same eigenfunctions, if we denote A\ as an
eigenvalue of the Laplace-Beltrami A corresponding to a eigenfunction, e is
an eigenvalue of the heat operator H; corresponding to the same eigenfunction.
The heat kernel k;(u,v) is introduced to measure the amount of heat that has
been transformed from point v to point v on the 3D shape surface at time t.
Given an initial heat distribution f : M — R, for any M, there exists the
following relation between the heat kernel k;(u,v) and the heat operator H;:

H, f(u) = /M Ko (. 0) £ (v) o, 3)

where dv is the volume form at v € M. Assuming the Riemannian manifold
M is compact, the heat kernel can then be expressed in the form of its eigen-
decomposition:

Fi(u,v) = > e i(u)di(v), (4)
=0

which can then be used to compute the HKS of each vectex u on the 3D shape
surface at time ¢:

()

4

Heat diffusion kernel distribution

Fig. 2. Tllustration of the heat diffusion kernel distribution of a 3D shape. (Color figure
online)
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where S;(u) is defined as the diagonal of the heat kernel k;(u,v). We then use
heat diffusion kernel distribution z; of HKS values S;(u) for all vectices at the
diffusion time t. Figure 2 illustrates how the heat diffusion kernel signature values
on the surface of a bicycle model can be computed, and how the heat diffusion
kernel distribution can be correspondingly obtained from HKS values. Given the
time-step ¢ = 1, a red point on the 3D shape surface denotes a high HKS value,
where a high HKS value is equivalent to the “corner” point, which contains the
most valuable information within the neighboring vertices. The heat diffusion
kernel distribution x; at the time step ¢ = 1 can then be obtained by projecting
all HKS values S;(u), Vu onto a histogram.

3.2 Learning Heat Diffusion with Long-Short Term Memory

Extended from the original LSTM architecture, LSTM has some variants, includ-
ing the “peephole” architecture [12] and the gated recurrent unit architecture
[6]. In this work, we propose to learn heat kernel probability distributions over
multiple diffusion time steps using HD-LSTM, which is designed based on the
basic LSTM architecture. A memory cell of LSTM contains four main compo-
nents, including an input gate, a self-recurrent neuron, a forget gate and an
output gate. When we feed the heat diffusion kernel distribution z; as the input
to HD-LSTM, the activation at the input gate, the candidate value C, and the
activation at the memory cell can be computed as:

It :U(W]It+U]ht—l +bI)7 (6)
Cy = tanh(Wexy + Uyhy 1 + be), (7)
.ft = O'(fot + Ufht_l + bf), (8)

where o(-) is a sigmoid layer that determines how much information are going
through this layer and outputs values O, € (0, 1], and the tanh(-) layer outputs
values Oiann € (—1,1). The forget gate determines the new cell state Cy by
deciding how much information of the earlier heat diffusion kernel distributions
should be forgotten. Given the values of the input gate activation iy, the forget
gate activation f; and the candidate value C’h the new cell state C; can be
obtained using: K

Cy= ft xCi_q + I % Ch. (9)

The output gate value o; can then be obtained based on the input heat diffusion
kernel histogram z;, the hidden layer value at the previous time step h;_1 and
the updated cell state value C; through:

O = O'(Wol‘t + Uoht—l + VOCt + bo), (10)
and the new hidden layer value h; can be computed using:

ht = op x tanh(C}). (11)
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Fig. 3. Generating discriminative random vectors from groundtruth labels of 3D
shapes. Red dashed rectangular denote 3D shapes that belong to the same object cat-
egory and their corresponding identical discriminative random vectors. (Color figure
online)

In above formulations, Wy, W., Wy, W,, Ur, U, Us, U, and V, are weight
parameters of the model, and by, by, b. and b, are bias vectors.

In order to guide HD-LSTM toward learning discriminative 3D shape rep-
resentations, we transform groundtruth labels of training 3D shapes into the
form of discriminative vectors Y, and assign these vectors to the hidden layer
unit h; at each time step ¢. 3D shapes that belong to the same category will be
assigned identical discriminative vectors at the outputs of hidden units, so that
HD-LSTM can encourage the intra-class distance of learned 3D shape represen-
tations to be low. Figure 3 shows how discriminative vectors are generated based
on the groundtruth category information of training 3D shapes. The top two 3D
shapes on the left side are both bicycles, thus they are mapped to identical vec-
tors within the red dashed rectangular. Experimental results suggest that using
random values for entries of the discriminative vectors can lead to good perfor-
mance. Previous investigations [40] also demonstrated the effectiveness of using
random vectors. In the training phase, HD-LSTM minimizes the reconstruction
error between discriminative vectors Y and the hidden unit outputs h; through
time:

N T
. i )

aVrVgUfrvl};l;; IY? = hill3, (12)

where NN is the total number of training samples, T is the total number of
sampling time steps of the heat diffusion kernel on 3D shape surfaces and W,
U, V, b are abbreviated forms of above defined weight parameters and bias
vectors of the HD-LSTM model. OnAce we obtain the optimal values of W, U,
V and I;, the output of hidden unit hi at each time step can be considered as a
discriminative representation of the 3D shape i. We then train a softmax layer
[4] using outputs of hidden units of all training samples (i € [1, N]) through all
heat diffusion kernel time steps (¢ € [1,77]), so that the predicted probability P}
for the j-th class of the output unit 4! ( while i corresponds to heat diffusion
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Fig. 4. Learning HD-LSTM from temporal dynamics of heat diffusion on 3D shape
surfaces. We show heat diffusion kernel values on the 3D shape surfaces in consecutive
3 time steps, where the red points denote high values and blue points denote low values.
The sequential inputs to HD-LSTM are histograms of heat diffusion kernel values at
each time step. (Color figure online)

kernel distribution ¢ at the input gate of HD-LSTM) can be computed through:

hi

et Wi

Pi(y = jlh;) = (13)

K hjl w ’
e k
k=1 ¢

P} is a J-dimensional vector, where J equals to the number of classes of the
dataset. Finally, in order to obtain a global representation of a 3D shape ¢, we
compute the average of P} through all time steps:

% 1 d i
Pi= TZP, (14)
t=1

3.3 3D Shape Retrieval

We evaluate the performance of HD-LSTM on the 3D shape retrieval task, where
retrieval is conducted by computing the dissimilarity matrix D’ between the
query 3D shapes P, and the database 3D shapes P; based on Lz norm using

Euclidean distance:
Dj; = /(P — Pa)*. (15)

4 Cross-Domain Heat Diffusion Long-Short Term
Memory

By guiding LSTM with discriminative vectors at the outputs of hidden units, a
favorable property of HD-LSTM is that it can be easily generalized to learning
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multi-view data by connecting HD-LSTM to another neural network through
discriminative vectors. Thus, we further propose a CDHD-LSTM architecture to
address the sketch-based 3D shape retrieval problem [24] based on HD-LSTM.
Inspired by some recent work that represent sketches using CNN [33], in this
work, we consider each sketch as an image and compute the CNN feature for
each sketch using a per-trained CNN [30]. We denote X, = {«l, 22, 22}
as CNN features of M training sketches. In order to map both CNN features of
sketches and heat diffusion kernel distributions of 3D shapes into a unified feature
space, we establish a bridge between both domains by connecting a 3-layer neural
network to the output units of HD-LSTM, where the 3-layer neural network
contains an input layer, a hidden layer and a target layer. The input layer takes
CNN sketch features as inputs to the neural network, and we follow the same
strategy as in HD-LSTM to assign discriminative vectors to the target layer. The
3-layer neural network and HD-LSTM can be connected by assigning identical
discriminative vectors Y for data that come from the same category. More
specifically, learning the 3-layer neural network can be achieved by minimizing
the reconstruction error between at the target layer:

M L
1 i i
arg mlnﬁZHY — o (@) +¢ > IWIE, (16)
Wb i=1 =1
where W = {Wl, W2 ..., WL} € RP*L is the neuron parameters of the 3-layer

neural network, b is the bias neuron value, P is the number of neurons and L
is the number of layers. Once the optimal values of W and b are obtained, we
extract neuron values 7% at the target layer when a query sketch x% from the
testing set passes through the 3-layer neural network. Consider a sketch sample
2t and a 3D shape sample z! that belong to the same object class ¢/, since
both of the cross-domain samples are mapped towards the same discriminative
vector Ycl, the data smoothness can be preserved between the learned sketch
representation 7 and the learned 3D shape representation hf. Similar as the
strategy adopted in HD-LSTM, we jointly train a softmax layer using both
learned sketch representations r¢,Vi € [1, M] and learned heat diffusion hi,Vi €
[1,N],t € [1,T]. For a sketch-based 3D shape retrieval system, the predicted
probability histograms P, are representations for query sketches, while the mean
of predicted probability histograms P, are representations for 3D shapes in the
database. The architecture of CDHD-LSTM is illustrated in Fig.5. Note that
Y is a generalized interpretation of the discriminative vectors. In fact, while
the discriminative vectors for 3D models Y,, and the discriminative vectors for
sketches Y, have an identical dimension K’, the vector numbers are very likely
to be different (i.e., M # N). The optimization of the 3-layer neural network
is separate from HD-LSTM, and can be implemented using the commonly used
backpropagation algorithm [37].
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Fig. 5. Learning domain-invariant representations for sketch-based 3D shape retrieval
using the CDHD-LSTM architecture. CDHD-LSTM is constructed by connecting a 3-
layer neural network to HD-LSTM at the output ends, where the connection is estab-
lished by sharing identical discriminative random vectors for sketches and 3D shapes
that come from the same category.

5 Experiments

5.1 3D Shape Retrieval

In order to demonstrate the effectiveness of the proposed HD-LSTM method, we
conduct experiments on 3D shape retrieval tasks using the McGill dataset. The
5 commonly used evaluation metrics, nearest neighbor (NN), first tier (1-Tier),
second tier (2-Tier), discounted cumulated gain (DCG) and average precision
(AP) are used for evaluating the performance of the proposed methods and
comparison methods.

McGill shape dataset: The McGill dataset contains 255 objects with signifi-
cant partial deformations. These objects come from 10 object categories, includ-
ing ant, crab, spectacle, hand, human, octopus, plier, snake, spider and teddy
bear, where each object category contains 3D shapes with a wide range of pose
variations. We conduct the retrieval experiment by randomly choosing 10 shapes
per class to train HD-LSTM while using the remaining shapes as query data.

We empirically set the dimension of the discriminative random vectors K’
as 120 and the learning rate as 0.1. When computing the heat diffusion kernel
descriptors (i.e., HKS) of 3D shapes, the universal time unit 7 and the total heat
diffusion sampling time step value T are defined as 0.01 and 101 respectively.
HKS values on 3D shape surfaces are projected to 128-dimensional histograms.
We set the maximum iteration of LSTM to 50. As illustrated in Fig. 6, HD-LSTM
normally can converge to a low reconstruction error between 20 ~ 30 iterations
on McGill dataset.
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Fig. 6. Convergence of the reconstruction error when training HD-LSTM on the McGill
shape dataset.

We use the 128-dimensional heat diffusion kernel distributions over 101 time
steps as local features for each 3D shape, and construct Bag-of-Words (BoW) as
a baseline by projecting the local features onto a dictionary, which contains 120
dictionary atoms. When evaluating the performance of the proposed HD-LSTM
approach, we show experimental results of the cases when we use the softmax
layer to obtain category probabilities for retrieval and when we directly use out-
puts of hidden units for retrieval. We also show comparisons with state-of-the-art
methods, including the Hybrid BoW [23], the covariance method [35], the graph-
based method [1] and the DeepShape method [39]. The retrieval performance of
the proposed HD-LSTM method and state-of-the-art methods are illustrated
in Tablel. Among the methods that HD-LSTM compares to, DeepShape [39]
models HKS features with heat diffusion kernel distribution and learns discrimi-
native shape representations with Autoencoder, while [35], [23] and [1] are based
on the covariance, the bag-of-words model and graph matching of local shape
descriptors respectively. It can be observed that the performance of the baseline
BoW method is relatively poor when comparing with other approaches. By learn-
ing the dynamics of the heat diffusion on 3D shapes, the temporal information
are utilized through the learning process. Also, the supervised HD-LSTM app-
roach can enhance the discriminative power of shape representations. Consistent
with our assumption, experimental results suggest that the proposed HD-LSTM
method achieves a leading performance, and when incorporating with the soft-
max layer the performance of HD-LSTM can be further improved.

5.2 Sketch-Based 3D Shape Retrieval

We evaluate the performance of CDHD-LSTM on the sketch-based 3D shape
retrieval task using the extended large scale SHREC 2014 dataset [24], which
contains 13,680 2D sketch image queries of 171 object classes (with an identical
number of 80 sketches for each class) from the human sketch recognition dataset
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Table 1. Performance comparison between the proposed HD-LSTM method and the
state-of-the-art methods on the McGill dataset.

Methods NN | 1-Tier | 2-Tier | DCG | AP
Hybrid BoW [23] 0.950.63 |0.79 |0.88 |—
Covariance method [35] 0.97 |0.73 |0.81 |0.93 |—
Graph-based method [1] 097 |0.74 1091 |0.93 |—
DeepShape [39] 0.98/0.78 1083 |— —
BoW 0.80 |0.40 |0.54 |0.70 |0.46
HD-LSTM (without softmax)|0.97 |0.88 [0.83 |0.88 |0.90
HD-LSTM (with softmax) 098092 (095 095 0.94

[10] and 8,987 3D shapes of corresponding 171 object classes from a combina-
tion of multiple 3D datasets. The sketch data contains a training split of 8,550
sketches and a testing split of 5, 130 sketches. When training the CDHD-LSTM,
we use the training split of sketch data and all 3D shapes in the database. In the
sketch-based 3D shape retrieval phase, the testing split of sketch data are used
as queries and all 3D shapes are considered as the database.

A unique property of the SHREC 2014 3D shape dataset is the numbers of 3D
shapes are highly unbalanced across different categories that the number in each
class can vary from 1 to 632. Thus, we follow [24] to evaluate the performance of
the sketch-based 3D shape retrieval system based on the reciprocally weighted
evaluation metric. Specifically, a reciprocal weight is assigned to each query
instance based on the number of available 3D shapes that belong to the same
category as the query. Assuming a sketch query z belong to class [4(z), the weight
W, (z) assigned to the retrieval result in response to query z can be defined as:

ﬁ)r(z) = (17)

where p, indicates the number of available 3D shapes that belong to class [,(z).
The 5 evaluation metric scores, NN, FT, ST, DCG and AP are obtained by
further dividing another global weight wj,, which can be computed using:

7 1
g = —, (18)
=1 D=

given that Z is the total number of sketch queries.

We use the pre-trained CNN on ImageNet [8] to extract sketch features at the
sketch input end of CDHD-LSTM. Each sketch image is first resized to 231 x 231
pixels as the input to CNN [30], which contains 5 convolutional layers and 2 fully
connected layers, where values of 4096 neurons in the 7-th layer are extracted
as the 4096-dimensional sketch image representation. In order to reduce the
computational cost, we perform dimensionality reduction on 4096-dimensional
sketch CNN features using PCA [19] and reduce the dimension to 100. We use
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the same diffusion time steps and the number of heat diffusion kernel distribution
bins as in HD-LSTM, and we set the discriminative dimension and learning rate
as 100 and 0.01 respectively.

Table 2. Reciprocally weighted performance metrics comparison on different datasets
of the extended large-scale SHREC’14 benchmark for the Query-by-Sketch retrieval.

Method NN | FT ST |DCG | AP
1.0e — 05%

BF-fGALIF 0.43 10.27 0.41 |2.03 |0.34
CDMR (osm = 0.1, a = 0.6) 0.18 10.14 0.22 1 0.12 |0.15
CDMR (osm = 0.1, a = 0.3) 0.38 10.25 0.38 10.18 |0.30
CDMR (osm = 0.05, a = 0.6) 0.33 |0.27 0.40 |0.18 |0.31
CDMR (osm = 0.05, a = 0.3) 0.44 1 0.30 0.45 10.20 |0.36
SBR-VC (a = 1) 0.25 1 0.14 0.26 | 1.86 |0.19
SBR-VC (a = 0.5) 0.25 0.15 0.27 |1.87 0.19
OPHOG 0.52 1 0.29 0.45 1 2.08 |0.34
SCMR-OPHOG 0.52 1 0.39 0.61 |2.17 |0.49
BOF-JESC (VQ = 800) 0.33 | 0.14 0.26 | 1.88 |0.22
BOF-JESC (VQ = 1000) 0.31 | 0.13 0.20 | 1.82 |0.18
BOF-JESC (FV) 0.32 1 0.14 019 |1.74 |0.15
HD-LSTM 0.28 1 0.14 0.22 10.33 ]0.29
CDHD-LSTM (without softmax) | 0.86 | 0.44 0.93 |3.33 1 0.68
CDHD-LSTM (with softmax) 0.91/0.54 1.03|3.37 0.75

In order to demonstrate the cross-domain learning capability of CDHD-
LSTM, we learn HD-LSTM on 3D shapes of the SHREC 2014 dataset and
perform 3D shape retrieval without learning sketch features using the 3-layer
neural network (since the dimension of sketch features is 300, the distances
between sketch queries and 3D shapes in the database can be directly com-
puted). We denote the brutal cross-domain retrieval method as HD-LSTM. Sim-
ilar as the regular 3D shape retrieval, both experimental results of CDHD-LSTM
when using and not using the softmax layer are shown in Table 2. We compare
with the-state-of-the-arts methods, bag-of-features of dense SIFT (BF-DSIFT),
cross-domain manifold ranking (CDMR), shape context matching (SBR-VC),
overlapped pyramid of histograms of oriented gradients (OPHOG), similarity
constrained manifold ranking-overlapped pyramid of histograms of oriented gra-
dients (SCMR-OPHOG) and bag-of-features junction-based extended shape con-
text (BOF-JESC) [24]. The Precision-Recall curve of the proposed method and
the state-of-the-art methods are shown in Fig. 7.

It can be observed that the performance of the original HD-LSTM is weak
due to the high cross-domain discrepancy between the 3D shape representations
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Fig. 7. Precision-Recall plot of performance comparisons on the extended large-scale
SHREC 14 sketch-based 3D shape retrieval dataset.

and the sketch representations. After performing CDHD-LSTM learning, same-
category instances of both 3D shapes and sketches are encouraged to map to
identical target, so that the data smoothness can be preserved within the new
feature space. As shown in Table 2, the CDHD-LSTM method can achieve signif-
icant improvements over HD-LSTM, and it also outperforms the state-of-the-art
methods. Similar as in the regular 3D shape retrieval experiment, improved per-
formance can be observed when incorporating CDHD-LSTM with a softmax
layer for retrieval.

6 Conclusions

In this work, we explored temporal dynamics of heat diffusion kernel distrib-
utions, and thus proposed to learn novel 3D shape representations by utiliz-
ing relationships between different heat diffusion sampling time steps. Based
on the sequential data learning method LSTM, we propose a supervised learn-
ing structure HD-LSTM that learns discriminative 3D shape representations by
guiding the heat diffusion kernel distributions toward discriminative random vec-
tors at the outputs of hidden units. Employing the generalization capability of
HD-LSTM, we further propose a CDHD-LSTM structure for learning domain-
invariant representations by connecting the output end of HD-LSTM to a 3-
layer neural network. Since cross-domain data that belong to the same category
are guided to approach an identical discriminative vector, the data smoothness
within learned representations can be preserved. We evaluated the effectiveness
of HD-LSTM and CDHD-LSTM structures on the regular 3D shape retrieval task
and the sketch-based 3D shape retrieval task respectively. Experimental results
on the MacGill shape dataset and the extended SHREC 2014 dataset suggest
both HD-LSTM and CDHD-LSTM can achieve state-of-the-art performance.
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