Skip to main content

Introduction to the Model of the Active Assistance System for Elder and Disabled People

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 639))

Included in the following conference series:

Abstract

In this article we present assumptions for development of novel model of active system that can assist elder and disabled people. In the following sections we discuss literature and propose a structure of decision support and data processing on levels: voice and speech processing, image processing based on proposed descriptors, routing and positioning. For these aspects pros and cons that can be faced in the development process are described with potential preventive actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, J., Ryoo, M.: Human activity analysis: a review. ACM Comput. Surv. 43, 1–43 (2011)

    Article  Google Scholar 

  2. Aggarwal, J., Xia, L.: Human activity recognition from 3D data: a review. Pattern Recogn. Lett. 48, 70–80 (2014)

    Article  Google Scholar 

  3. Ainsworth, B., Haskell, W., Herrmann, S., Meckeset, N.: Compendium of physical activities: a second update of codes and MET values. Med. Sci. Sports Exerc. 43(8), 1575–1581 (2011)

    Article  Google Scholar 

  4. Arif, M., Kattan, A.: Physical activities monitoring using wearable acceleration sensors attached to the body. PLoS ONE 10(7), e0130851 (2015)

    Article  Google Scholar 

  5. Atallah, L., Lo, B., King, R., Yang, G.: Sensor positioning for activity recognition using wearable accelerometers. IEEE Trans. Biomed. Circ. Syst. 5, 320–329 (2011)

    Article  Google Scholar 

  6. Brociek, R., Słota, D.: Reconstruction of the boundary condition for the heat conduction equation of fractional order. Therm. Sci. 19, 35–42 (2015)

    Article  Google Scholar 

  7. Brociek, R., Słota, D.: Application of intelligent algorithm to solve the fractional heat conduction inverse problem. Commun. Comput. Inf. Sci. 538, 356–365 (2015)

    Article  Google Scholar 

  8. Budnikas, G.: A model for an aggression discovery through person online behavior. In: Saeed, K., Homenda, W. (eds.) CISIM 2015. LNCS, vol. 9339, pp. 305–315. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  9. Capela, N., Lemaire, E., Baddour, N.: Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients. PLoS ONE 10(4), e0124414 (2015)

    Article  Google Scholar 

  10. Cheung, V., Gray, L., Karunanithi, M.: Review of accelerometry for determining daily activity among elderly patients. Arch. Phys. Med. Rehabil. 92, 998–1014 (2011)

    Article  Google Scholar 

  11. Cpałka, K., Łapa, K., Przybył, A.: A new approach to design of control systems using genetic programming. Inf. Technol. Control 44(4), 433–442 (2015)

    Google Scholar 

  12. Damaševičius, R., Stuikys, V., Toldinas, J.: Domain ontology-based generative component design using feature diagrams and meta-programming technique. In: Proceedings of 2nd European Conference on Software Architecture ECSA 2008, pp. 338–341 (2008)

    Google Scholar 

  13. Drosou, A., Ioannidis, D., Moustakas, K., Tzovaras, D.: Spatiotemporal analysis of human activities for biometric authentication. Comput. Vis. Image Underst. 116(3), 411–421 (2012)

    Article  Google Scholar 

  14. Ferdowsi, S., Voloshynovskiy, S., Kostadinov, D., Korytkowski, M., Scherer, R.: Secure representation of images using multi-layer compression. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS, vol. 9119, pp. 696–705. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  15. Fleury, A., Noury, N., Vacher, M.: Improving supervised classification of activities of daily living using prior knowledge. Int. J. E-Health Med. Commun. 2(1), 17–34 (2011)

    Article  Google Scholar 

  16. Govindaraju, V.: A generative framework to investigate the underlying patterns in human activities. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1472–1479 (2011)

    Google Scholar 

  17. Gupta, P., Dallas, T.: Feature selection and activity recognition system using a single triaxial accelerometer. IEEE Trans. Biomed. Eng. 61(6), 1780–1786 (2014)

    Article  Google Scholar 

  18. Hoque, E., Stankovic, J.: AALO: activity recognition in smart homes using Active Learning in the presence of Overlapped activities. In: PervasiveHealth, pp. 139–146 (2012)

    Google Scholar 

  19. Incel, O., Kose, M., Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3, 145–171 (2013)

    Article  Google Scholar 

  20. Jain, A., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Trans. Circ. Syst. Video Technol. 14, 4–20 (2004)

    Article  Google Scholar 

  21. Korytkowski, M., Rutkowski, L., Scherer, R.: Fast image classification by boosting fuzzy classifiers. Inf. Sci. 327, 175–182 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lara, O., Labrador, M.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutorials 15, 1192–1209 (2013)

    Article  Google Scholar 

  23. Lee, D., Yang, M., Oh, S.: Fast and accurate head pose estimation via random projection forests. In: Proceedings of International Conference on Computer Vision (ICCV 2015), pp. 1958–1966 (2015)

    Google Scholar 

  24. Martišius, I., Damaševičius, R.: A prototype SSVEP based real time BCI gaming system. Comput. Intell. Neurosci. 2016 (2016)

    Google Scholar 

  25. Napoli, C., Pappalardo, G., Tramontana, E.: A mathematical model for file fragment diffusion and a neural predictor to manage priority queues over BitTorrent. Appl. Math. Comput. Sci. 26(1), 147–160 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Napoli, C., Pappalardo, G., Tramontana, E., Zappalà, G.: A cloud-distributed GPU architecture for pattern identification in segmented detectors big-data surveys. Comput. J. 59(3), 338–352 (2016)

    Article  Google Scholar 

  27. Okulewicz, M., Mandziuk, J.: Two-phase multi-swarm PSO and the dynamic vehicle routing problem. In: Proceedings of the IEEE Symposium Series on Computational Intelligence, pp. 86–93 (2014)

    Google Scholar 

  28. Osmani, V., Balasubramaniam, S., Botvich, D.: Human activity recognition in pervasive health-care: supporting efficient remote collaboration. J. Netw. Comput. Appl. 31(4), 628–655 (2008)

    Article  Google Scholar 

  29. Özdemir, A., Barshan, B.: Detecting falls with wearable sensors using machine learning techniques. Sensors 14(6), 10691–10708 (2014)

    Article  Google Scholar 

  30. Poppe, R.: A survey on vision-based human action recognition. Image Vis. Comput. J. 28, 976–990 (2010)

    Article  Google Scholar 

  31. Pei, L., Guinness, R., Chen, R., Liu, J.: Human behavior cognition using smartphone sensors. Sensors 13, 1402–1424 (2013)

    Article  Google Scholar 

  32. Shoaib, M., Bosch, S., Incel, O., Scholten, H., Havinga, P.: A survey of online activity recognition using mobile phones. Sensors 15(1), 2059–2085 (2015)

    Article  Google Scholar 

  33. Stateczny, A., Wlodarczyk-Sielicka, M.: Self-organizing artificial neural networks into hydrographic big data reduction process. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds.) RSEISP 2014. LNCS, vol. 8537, pp. 335–342. Springer, Heidelberg (2014)

    Google Scholar 

  34. Suriani, N., Hussain, A., Zulkifley, M.: Sudden event recognition: a survey. Sensors 13(8), 9966–9998 (2013)

    Article  Google Scholar 

  35. Turaga, P., Chellappa, R., Subrahmanian, V., Udrea, O.: Machine recognition of human activities: a survey. IEEE Trans. Circ. Syst. Video Technol. 18, 1473–1488 (2008)

    Article  Google Scholar 

  36. Waledzik, K., Mandziuk, J.: An automatically generated evaluation function in general game playing. IEEE Trans. Comput. Intell. AI Games 6(3), 258–270 (2014)

    Article  Google Scholar 

  37. Wlodarczyk-Sielicka, M., Stateczny, A.: Selection of SOM parameters for the needs of clusterisation of data obtained by interferometric methods. In: Proceedings of 16th International Radar Symposium, Dresden, pp. 1129–1134 (2015)

    Google Scholar 

  38. Ziaeefard, M., Bergevin, R.: Semantic human activity recognition: a literature review. Pattern Recogn. 48(8), 2329–2345 (2015)

    Article  Google Scholar 

  39. Zhu, C., Sheng, W.: Motion- and location-based online human daily activity recognition. Pervasive Mob. Comput. 7(2), 256–269 (2011)

    Article  Google Scholar 

  40. Yampolskiy, R., Govindaraju, V.: Behavioural biometrics: a survey and classification. Int. J. Biometrics 1(1), 81–113 (2008)

    Article  Google Scholar 

  41. Yu, H., Spenko, M., Dubowsky, S.: An adaptive shared control system for an intelligent mobility aid for the elderly. Auton. Robots 15, 53–66 (2003)

    Article  Google Scholar 

  42. Kwapisz, J.R., Weiss, G., Moore, S.: Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  43. Mannini, A., Sabatini, A.: Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 10, 1154–1175 (2010)

    Article  Google Scholar 

  44. Mathie, M., Celler, B., Lovell, N., Coster, A.: Classification of basic daily movements using a triaxial accelerometer. Med. Biol. Eng. Comput. 42, 679–687 (2004)

    Article  Google Scholar 

  45. Miluzzo, E., Lane, N., Fodor, K., Peterson, R.: Sensing meets mobile social networks: the design, implementation and evaluation of the cenceme application. In: Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems, SenSys 2008, pp. 337–350 (2008)

    Google Scholar 

  46. Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J.: Activity classification using realistic data from wearable sensors. IEEE Trans. Inf. Technol. Biomed. 10, 119–128 (2006)

    Article  Google Scholar 

  47. Siirtola, P., Roning, J.: Recognizing human activities user-independently on smartphones based on accelerometer data. Int. J. Interact. Multimedia Artif. Intell. 1(5), 38–45 (2012)

    Article  Google Scholar 

  48. Sohn, T., Varshavsky, A., LaMarca, A., Chen, M.Y., Choudhury, T., Smith, I., Consolvo, S., Hightower, J., Griswold, W.G., de Lara, E.: Mobility detection using everyday GSM traces. In: Dourish, P., Friday, A. (eds.) UbiComp 2006. LNCS, vol. 4206, pp. 212–224. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  49. Tran, D., Sorokin, A.: Human activity recognition with metric learning. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 548–561. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  50. Yang, J.: Toward physical activity diary: motion recognition using simple acceleration features with mobile phones. In: Proceedings of the 1st International Workshop on Interactive Multimedia for Consumer Electronics, IMCE 2009, pp. 1–10 (2009)

    Google Scholar 

  51. Cpalka, K., Zalasinski, M., Rutkowski, L.: A new algorithm for identity verification based on the analysis of a handwritten dynamic signature. Appl. Soft Comput. 43, 47–56 (2016)

    Article  Google Scholar 

  52. Cpalka, K., Zalasinski, M.: On-line signature verification using vertical signature partitioning. Expert Syst. Appl. 41(9), 4170–4180 (2014)

    Article  Google Scholar 

  53. Zhang, M., Sawchuk, A.: USC-HAD: a daily activity dataset for ubiquitous activity recognition using wearable sensors. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 1036–1043 (2012)

    Google Scholar 

Download references

Acknowledgments

Authors acknowledge contribution to this project of Operational Programme: “Knowledge, Education, Development” financed by the European Social Fund under grant application POWR.03.03.00-00-P001/15, contract no. MNiSW/2016/DIR/208/NN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawid Połap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Połap, D., Woźniak, M. (2016). Introduction to the Model of the Active Assistance System for Elder and Disabled People. In: Dregvaite, G., Damasevicius, R. (eds) Information and Software Technologies. ICIST 2016. Communications in Computer and Information Science, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-46254-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46254-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46253-0

  • Online ISBN: 978-3-319-46254-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics