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Abstract. We propose an efficient distributed online learning proto-
col for low-latency real-time services. It extends a previously presented
protocol to kernelized online learners that represent their models by a
support vector expansion. While such learners often achieve higher pre-
dictive performance than their linear counterparts, communicating the
support vector expansions becomes inefficient for large numbers of sup-
port vectors. The proposed extension allows for a larger class of online
learning algorithms—including those alleviating the problem above
through model compression. In addition, we characterize the quality of
the proposed protocol by introducing a novel criterion that requires the
communication to be bounded by the loss suffered.

1 Introduction

We consider the problem of distributed online learning for low-latency real-time
services [4,10]. In this scenario, a learning system of m ∈ N connected local learn-
ers provides a real-time prediction service on multiple dynamic data streams. In
particular, we are interested in generic distributed online learning protocols that
treat concrete learning algorithms as a black-box. The goal of such a protocol
is to provide, in a communication efficient way, a service quality similar to a
serial setting in which all examples are processed at a central location. While
such an optimal predictive performance can be trivially achieved by centralizing
all data, the required continuous communication usually exceeds practical limits
(e.g., bandwidth constraints [1], latency [8,21], or battery power [5,16]). Simi-
larly, communication limits can be satisfied trivially by letting all local learners
work in isolation. However, this usually comes with a loss of service quality that
increases with the number of local learners.

In previous work, we presented a protocol that effectively reduces communi-
cation while providing strict loss bounds for a class of algorithms that perform
loss-proportional convex updates of linear models [10]. That is, algorithms that
update linear models in the direction of a convex set with a magnitude propor-
tional to the instantaneous loss (e.g., Stochastic Gradient Descent [2], or Passive
Aggressive [3]). The protocol is able to cease communication as soon as no loss is
suffered anymore. However, for most realistic problems this cannot be achieved
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(a) (b)

Fig. 1. (a) Trade-off between cumulative error and cumulative communication, and (b)
cumulative communication over time of a distributed learning system using the pro-
posed protocol. The learning task is classifying instances from the UCI SUSY dataset
with 4 learners, each processing 1000 instances. Parameters of the learners are opti-
mized on a separate set of 200 instances per learner.

by linear models. Thus, a more complex hypothesis class is desirable that enables
the learners to achieve zero loss and thus reach quiescence.

Kernelized online learning algorithms can provide such an extended hypoth-
esis class, but practical versions of these algorithms do not perform loss-
proportional convex updates (e.g., [12,15,20]). Therefore, in this paper we
extend the class of algorithms to approximately loss-proportional convex updates
(Sect. 2). This relaxation is particularly crucial for kernelized online learners for
streams that represent the model by its support vector expansion. These learn-
ers use this relaxation in order to reduce the number of support vectors, since
otherwise a monotonically increasing model size would render them infeasible in
streaming settings.

Also, for the first time we characterize the quality of the proposed protocol
by introducing a novel criterion for efficient protocols that requires a strict loss
bound and ties the loss to the allowed amount of communication. In partic-
ular, the criterion implies that the communication vanishes whenever the loss
approaches zero. We bound the loss and communication of the proposed pro-
tocol and show for which class of learning algorithms it fulfills the efficiency
criterion (Sect. 3). While the strict loss bound required in our criterion can be
achieved by periodically communicating protocols [4,14], their communication
never vanishes, independent of their loss, which is also required for efficiency. By
communicating only when it significantly improves the service quality, our pro-
tocol achieves similar service quality as any periodically communicating protocol
while communicating less by a factor depending on its in-place loss.

To further amplify this advantage, we apply methods from serial kernelized
in-stream learning approaches. These approaches reduce the number of support
vectors, e.g., by truncating individual support vectors with small weights [12], or
by projecting a single support vector on the span of the remaining ones [15,20].
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We illustrate the impact of the choice of the hypothesis class on the predictive
performance and communication as well as the impact of model compression on
an example dataset in Fig. 1. In this example, we predicted the class of instances
drawn from the SUSY dataset from the UCI machine learning repository [13].
The learning systems using linear models continuously suffer loss resulting in a
large cumulative error, but since the linear models are small compared to support
vector expansions, the cumulative communication is small. A continuously syn-
chronizing protocol using support vector expansions has a significantly smaller
loss at the cost of very high communication, since each synchronization requires
to send models with a growing number of support vectors. Using the proposed
dynamic protocol, this amount of communication can be reduced without losing
in prediction quality. In addition, when using model compression the communi-
cation can be further reduced to an amount similar to the linear model, but at
the cost of prediction quality.

We further discuss the behavior of our protocol with respect to the trade-off
between predictive performance and communication, and point out the strengths
and weaknesses of the protocol in Sect. 4.

2 Distributed Online Learning with Kernels

In this section, we provide preliminaries and describe the protocol, extend it
from linear function spaces to kernel Hilbert spaces, and provide an effective-
ness criterion for distributed online learning. For that, we consider distributed
online learning protocols Π = (A, σ) that run an online learning algorithm
A on a distributed system of m ∈ N local learners and exchange information
between these learners using a synchronization operator σ.

Preliminaries: The online learning algorithm A = (H, ϕ, �) run at each local
learner i ∈ [m] maintains a local model f i ∈ H from a function space H using
an update rule ϕ and a loss function �. That is, at each time point t ∈ N,
each learner i observes an individual input

(
xi

t, y
i
t

)
drawn independently from a

time-variant distribution Pt : X × Y → [0, 1] over an input space X × Y . Based
on this input and the local model, the local learner provides a service whose
quality is measured by the loss function � : H × X × Y → R+. After providing
the service, the local learner updates its local model using the update rule
ϕ : H × X × Y → H in order to minimize the cumulative loss. The synchro-
nization operator σ : Hm → Hm transfers the current model configuration
f =

(
f1, . . . , fm

)
of m local models to the synchronized configuration σ(f). In

the following, we recapitulate the dynamic protocol presented in [10] as well as
two baseline protocols, i.e., a continuously and a periodic protocol.

Given an online learning algorithm A, the periodic protocol P = (A, σb)
synchronizes every b ∈ N time steps the current model configuration f by replac-
ing all local models by their joint average f = 1/m

∑m
i=1 f i. That is, the syn-

chronization operator is given by
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σb(ft) =

{(
f t, . . . , f t

)
, if b | t

ft = (f1
t , . . . , fm

t ), otherwise
.

A special case of this is the continuous protocol C = (A, σ1) that continuously
synchronizes every round, i.e., σ1 (f) =

(
f , . . . , f

)
.

The dynamic protocol D = (A, σΔ) synchronizes the local learners using a
dynamic operator σΔ [10]. This operator only communicates when the model
divergence

δ(f) =
1
m

m∑

i=1

∥
∥f i − f

∥
∥2

(1)

exceeds a divergence threshold Δ. That is, the dynamic averaging operator
is defined as

σΔ(ft) =

{
(f t, . . . , f t), if δ(ft) > Δ

ft, otherwise
.

In order to decide when to communicate, each local learner i ∈ [m] monitors the
local condition ‖f i

t −rt‖2 ≤ Δ for a reference model rt ∈ H that is common
among all learners (see [6,7,11,19] for a more general description of this method).
The local conditions guarantee that if none of them is violated, the divergence
does not exceed the threshold Δ. The closer the reference model is to the true
average of local models, the tighter are the local conditions. Generally, the first
choice for the reference model is the average model from the last synchronization
step. Note, however, that there are several refinements of this choice that can be
used in practice to further reduce communication.

Efficiency Criterion: In the following, we introduce performance measures in
order to analyze the dynamic protocol and compare it to the continuous and
periodic protocols. We measure the predictive performance of a distributed online
learning system until time T ∈ N by its cumulative loss

L(T,m) =
T∑

t=1

m∑

i=1

�(f i
t ,

(
xi

t, y
i
t

)
).

Performance guarantees are typically given by a loss bound L(T,m), i.e., for
all possible input sequences it holds that L(T,m) ≤ L(T,m). These bounds can
be defined with respect to a sequence of reference models, in which case they are
referred to as (shifting) regret bounds.

We measure its performance in terms of communication by its cumulative
communication

C(T,m) =
T∑

t=1

c(ft),

where c : Hm → N measures the number of bytes required by the learning
protocol to synchronize models ft =

(
f1

t , . . . , fm
t

)
at time t.



Communication-Efficient Distributed Online Learning with Kernels 809

There is a natural trade-off between communication and loss of a distributed
online learning system. On the one hand, a loss similar to a serial setting can be
trivially achieved by continuous synchronization. On the other hand, communi-
cation can be entirely omitted. The trade-off for these two extreme protocols can
be easily determined: if the cumulative loss of an online learning algorithm A is
bounded by LA(T ), the loss of a permanently centralizing system with m local
learners running A is bounded by LC(T,m) = LA(mT ), i.e., the loss bound of
a serial online learning algorithm processing mT inputs. The protocol transmits
O (m) messages of size up to O (T ) in every of the T points in time. At the same
time, the loss of a distributed system without any synchronization is bounded
by L(T,m) = mLA(T ), whereas the communication is C(T ) = 0.

The communication bound of an adaptive protocol should only depend on
LA(T ) and not on T , while at the same time retaining the loss bound of the
serial setting. In the following definition we formalize this in order to provide a
strong criterion for effectiveness of distributed online learning protocols.

Definition 1. A distributed online learning protocol Π = (A, σ) processing mT
inputs is consistent if it retains the loss bound of the serial online learning
algorithm A, i.e.,

LΠ(T,m) ∈ O (LA(mT )) .

The protocol is adaptive if its communication bound is linear in the number
of local learners m and the loss bound LA(mT ) of the serial online learning
algorithm, i.e.,

CΠ(T,m) ∈ O (mLA(mT )) .

An efficient protocol is adaptive and consistent at the same time. In the fol-
lowing section we theoretically analyze the performance of the dynamic protocol
with respect to this efficiency criterion.

Extension to Kernel Methods: The protocols presented above are defined for
models from a Euclidean vector space. In this paper, we generalize H to be a
reproducing kernel Hilbert space H = {f : X → R|f(·) =

∑dimF
j=1 wjΦj(·)}

with kernel function k : X × X → R, feature space F , and a map-
ping Φ : X → F into the feature space [18]. The kernel function corresponds
to an inner product of input points mapped into feature space, i.e., k(x, x′) =∑dimF

j=1 ξjΦj(x)Φj(x′) for constants ξ1, ξ2, · · · ∈ R. Thus, we can express the
model in its support vector expansion, or dual representation, i.e., f(·) =∑

x∈S αxk(x, ·) with a set of support vectors S = {x1, . . . , x|S|} ⊂ X and cor-
responding coefficients αx ∈ R for all x ∈ S. This implies that the linear weights
w = (w1, w2, . . . ) ∈ F defining f are given implicitly by wi =

∑
x∈S ξiαxΦi(x). In

order to apply the previously defined synchronization protocols to models from
a reproducing kernel Hilbert space, we determine how to calculate the average
of a model configuration and its divergence. For that, let f =

(
f1, . . . , fm

) ⊂ H
be a model configuration with corresponding weight vectors

(
w1, . . . , wm

) ⊂ F ,
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where each model i ∈ [m] has support vectors Si = {xi
1, . . . , x

i
|Si|} ⊂ X and

coefficients αi
x for all x ∈ Si. The average is given by

f(·) =
1
m

m∑

i=1

f i(·) =
1
m

m∑

i=1

dimF∑

j=1

wi
jΦj(·) =

1
m

m∑

i=1

dimF∑

j=1

∑

x∈Si

ξjα
i
xΦj(x)Φj(·).

We can simplify the above equation to f(·) = 1
m

∑m
i=1

∑
x∈Si αi

xk(x, ·). By defin-
ing the union of support vectors S =

⋃
i∈[m] S

i = {s1, . . . , s|S|} and augmented
coefficients αi

s ∈ R, which are given by

αi
s =

{
αi

x, if x = s

0, otherwise
,

the dual representation of the average directly follows.

Proposition 2. For a model configuration f =
(
f1, . . . , fm

) ⊂ H, where each
model i ∈ [m] has augmented coefficients αi

s for s ∈ S, the average f ∈ H is
given by

f(·) =
∑

s∈S

(
1
m

m∑

i=1

αi
s

)

k(s, ·),

with support vectors S and coefficients αs = 1/m
∑m

i=1 αi
s for all s ∈ S.

Using this definition of the average, we now define the distance between models
in H and the divergence δ of a model configuration f ⊂ H. For an individual
model f i and the average f , the distance induced by the inner product of H is
defined by

∥
∥f i − f

∥
∥ = 〈f i, f i〉 + 〈f , f〉 − 2〈f i, f〉, i.e.,

∥
∥f i − f

∥
∥ =

∑

x∈Si

(
αi

x

)2
k(x, x) +

∑

s∈S

(αs)
2
k(s, s) − 2

∑

x∈Si

∑

s∈S

αi
xαsk(x, s).

Using this distance, we can compute the divergence (Eq. 1) for models from a
reproducing kernel Hilbert space.

3 Performance Guarantees

In order to determine the performance of the dynamic protocol, we start by
extending the definition of loss-proportional convex update rules. This allows
us to bound the loss for kernelized online learning algorithms that reduce their
model size using a compression step.

Let ϕ : H × X × Y → H be a loss-proportional convex update rule, then ϕ̃ is
an approximately loss-proportional convex update rule if for all f ∈ H,
x ∈ X, and y ∈ Y it holds that ‖ϕ̃(f, x, y) − ϕ(f, x, y)‖ ≤ ε. With this, we can
bound the distance between two models after the approximate update step.
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Lemma 3. For two models f, g ∈ H and an approximately loss-proportional
convex update rule ϕ̃, with ‖ϕ̃(f, x, y) − ϕ(f, x, y)‖ ≤ ε for the corresponding
loss-proportional convex update rule ϕ, it holds that

‖ϕ̃(f, x, y) − ϕ̃(g, x, y)‖2 ≤ ‖f − g‖2 − γ2 (�(f, x, y) − �(g, x, y))2 + 2ε2.

Proof. We abbreviate ϕ(f, x, y) as ϕ(f). Then ‖ϕ̃(f) − ϕ(f)‖ ≤ ε implies for
f, g ∈ H that ‖ϕ̃(f) − ϕ̃(g)‖2 ≤ ‖ϕ(f) − ϕ(g)‖2 + 2ε2. Together with the result
from Lemma 4 in [10], i.e., ‖ϕ(f) − ϕ(g)‖2 ≤ ‖f − g‖2 − γ2 (�(f) − �(g))2, fol-
lows the result. 	

Using Lemma 3, we can bound the loss of our protocol.

Theorem 4. Let A be an online learning algorithm with γ-loss-proportional
convex update rule ϕ. Let d1, . . .dT and p1, . . . ,pT be two sequences of model
configurations such that d1 = p1 and the first sequence is maintained by the
dynamic protocol D = (A, σΔ) and the second by the periodic protocol P =
(A, σb). That is, for t = 1, . . . , T the sequence is defined by dt+1 = σΔ (ϕ(dt)),
and pt+1 = σb (ϕ(pt)) respectively. Then it holds that

LD(T,m) ≤ LP(T,m) +
T

γ2
(Δ + 2ε2).

Proof. First note that for simplicity we abbreviate �(ft, xt, yt) by �(ft). We com-
bine our Lemma 3 with Lemma 3 from [10] which states that

1
m

m∑

i=1

‖σΔ(d)i − σb(p)i‖2 ≤ 1
m

m∑

i=1

‖di − pi‖2 + Δ.

This yields for all t ∈ [T ] that

m∑

i=1

∥
∥di

t+1 − pi
t+1

∥
∥2 ≤

m∑

i=1

∥
∥di

t − pi
t

∥
∥2 − γ2

m∑

i=1

(
�(di

t) − �(pi
t)

)2
+ Δ + 2ε2.

By applying this inequality recursively for t = 1, . . . , T it follows that

m∑

i=1

∥
∥di

t+1 − pi
t+1

∥
∥2 ≤

m∑

i=1

∥
∥di

1 − pi
1

∥
∥2

+ T (Δ + 2ε2) − γ2
T∑

t=1

m∑

i=1

(
�(di

t) − �(pi
t)

)2
.

Using d1 = p1, we conclude that

T∑

t=1

m∑

i=1

(
�(di

t) − �(pi
t)

)2 ≤ 1
γ2

(

T (Δ + 2ε2) −
m∑

i=1

∥
∥di

t+1 − pi
t+1

∥
∥2

)

≤ 1
γ2

TΔ

⇔ LD(T )m − LP(T )m ≤ 1
γ2

T (Δ + 2ε2) 	

By setting the communication period b = 1, this result also holds for the con-
tinuous protocol C.
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The result of Theorem 4 is similar to the original loss bound of the dynamic
protocol but also accounts for the inaccuracy of the update rule, e.g., because
of model compression. We can apply the original consistency result: if the con-
tinuous protocol is consistent, then the dynamic protocol is consistent as well.
For Stochastic Gradient Descent it has been shown that the dynamic protocol is
consistent for linear models [10]. From Theorem 4 follows that the dynamic pro-
tocol remains consistent for approximately loss-proportional update rules. Note
that for static target distributions, consistency can be achieved by a decreasing
divergence threshold and compression error, i.e., Δt = t−1/2 and ε = t−1/4.

We now provide communication bounds for the dynamic protocol. For that,
assume that the m learners maintain models in their support vector expansion.
Let Si

t ⊂ R
d denote the set of support vectors of learner i ∈ [m] at time t and αi

t

the corresponding coefficients. Let Bx ∈ O (d) be the number of bytes required to
transmit one support vector and Bα ∈ O (1) be the number of bytes required for
the corresponding weight. Furthermore, let I : N× [m] → {0, 1} be an indicator
function that is 1 if for learner i at time t a new support vector has been added
during the update.

We assume that a designated coordinator node performs the synchroniza-
tions, i.e., all local learners transmit their models to the coordinator which in
turn sends the synchronized model back to each learner. Furthermore, we assume
that all protocols apply the following trivial communication reduction strategy.
Let t′ be the time of last synchronization. Assume the coordinator stored the
support vectors of the last average model St′ . Whenever a learner i has to send
its model to the coordinator, it sends all support vector coefficients α but only
the new support vectors, i.e., only Si

t \Si
t′ . This avoids redundant communication

at the cost of higher memory usage at the coordinator side. In turn, after averag-
ing the models, the coordinator sends to learner i all support vector coefficients,
but only the support vectors St \ Si

t .
We start by bounding the communication of a continuous protocol C, i.e.,

one that transmits all models from each learner in each round. The trivial com-
munication reduction technique discussed above implies that in each round, a
learner transmits its full set of support vector coefficients and potentially one
support vector—depending on whether a new support vector was added in this
round. Thus, at time t learner i submits

|Si
t |Bα + I(t, i)Bx (2)

bytes to the coordinator. The coordinator transmits to learner i ∈ m all support
vector coefficients of the average model and all its support vectors, except the
support vectors Si

t of the local model at learner i. Thus, it transmits the following
amount of bytes.

∣
∣St

∣
∣ Bα +

∣
∣St \ Si

t

∣
∣ Bx =

∣
∣
∣
∣
∣
∣

m⋃

j=1

Sj
t

∣
∣
∣
∣
∣
∣
Bα +

∣
∣
∣
∣
∣
∣

m⋃

j=1

Sj
t \ Si

t

∣
∣
∣
∣
∣
∣
Bx. (3)

With this we can derive the following communication bound.
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Proposition 5. The communication of the continuous protocol C on m ∈ N

learners until time T ∈ N is bound by

CC(T,m) ≤ Tm2|ST |Bα + m|ST |Bx ≤ m2T 2Bα + m2TBx ∈ O (
m2T 2

)
.

Proof. The constantly synchronizing protocol transmits at each time step from
each learner a set of support vector coefficients and potentially one support
vector to the coordinator. The amount of bytes is given in Eq. 2. The coordinator
transmits the averaged model back to each learner with an amount of bytes as
given in Eq. 3. Summing up the communication over T ∈ N time points and m
learners yields

CC(T,m) =
T∑

t=1

m∑

i=1

⎛

⎝|Si
t |Bα + I(t, i)Bx +

∣
∣
∣
∣
∣
∣

m⋃

j=1

Sj
t

∣
∣
∣
∣
∣
∣
Bα +

∣
∣
∣
∣
∣
∣

m⋃

j=1

Sj
t \ Si

t

∣
∣
∣
∣
∣
∣
Bx

⎞

⎠

=
T∑

t=1

m∑

i=1

(|Si
t |Bα +

∣
∣St

∣
∣ Bα + I(t, i)Bx +

∣
∣St \ Si

t

∣
∣ Bx

)
.

We analyze this sum separately in terms of bytes required for sending the support
vectors and bytes for sending the coefficients. The amount of bytes for sending
the support vectors is bounded by m|Si

T |Bx, as we show in the following.

T∑

t=1

m∑

i=1

I(t, i)Bx +
∣
∣St \ Si

t

∣
∣ Bx =

T∑

t=1

m∑

i=1

I(t, i)Bx

︸ ︷︷ ︸
=|ST |Bx

+
T∑

t=1

m∑

i=1

∣
∣St \ Si

t

∣
∣ Bx

=|ST |Bx +
T∑

t=1

m∑

i=1

∣
∣
∣
∣
∣
∣

⎛

⎝
m⋃

j=1

Sj
t \

m⋃

j=1

Sj
t−1

⎞

⎠ \ (
Si

t \ St−1

)
∣
∣
∣
∣
∣
∣
Bx

≤|ST |Bx +
T∑

t=1

m∑

i=1

m∑

j=1
j �=i

I(t, i)Bx ≤ |ST |Bx +
T∑

t=1

m∑

i=1

(m − 1)I(t, i)Bx

≤|ST |Bx + (m − 1)|ST |Bx = m|ST |Bx.

We now bound the amount of bytes required for sending the support vector
coefficients.

T∑

t=1

m∑

i=1

|Si
t |︸︷︷︸

≤|ST |

Bα + |St|︸︷︷︸
≤|ST |

Bα ≤
T∑

t=1

m∑

i=1

2|ST |Bα = Tm2|ST |Bα.

From
∣
∣ST

∣
∣ ≤ mT and the fact that we regard Bα ∈ O (1) and Bx ∈ O (d) as

constants we can follow that

CC(T,m) ≤ 2Tm|ST |Bα + m|ST |Bx ≤ m2T 2Bα + m2TBx ∈ O (
m2T 2

)
. 	




814 M. Kamp et al.

Note that this communication bound implies that—unlike for linear models—
synchronizing models in their support vector expansion requires even more com-
munication than centralizing the input data. However, in real-time prediction
applications, the latency induced by central computation can exceed the time
constraints, rendering continuous synchronization a viable approach nonetheless.

Similarly, the communication of a periodic protocol P that communicates
every b ∈ N steps (b is often referred to as mini-batch size) can be bounded by

CP(T,m) ≤ T

b
2m|ST |Bα + m|ST |Bx ≤ T

b
m2TBα + m2TBx ∈ O

(
1
b
m2T 2

)
.

We now for the first time provide a communication bound for the dynamic
protocol D. For that, we first bound the number of synchronization steps and
then analyze the amount of communication per synchronization.

Proposition 6. Let A = (H, ϕ̃, �) be an online learning algorithm with an
approximately loss-proportional convex update rule ϕ̃ for which holds that
‖f − ϕ̃(f, x, y)‖ ≤ η�(f, x, y). The number of synchronizations VD(T ) of the
dynamic protocol D running A in parallel on m nodes until time T ∈ N with
divergence threshold Δ is bounded by

VD(T ) ≤ η√
Δ

LD(T,m).

where LD(T,m) denotes the cumulative loss of D.

Proof. For this proof, we abbreviate �(f i
t , x

i
t, y

i
t) as �(f i

t ) and ϕ̃(f i
t , x

i
t, y

i
t) as

ϕ̃(f i
t ). The dynamic protocol synchronizes if a local condition ‖f i

t − rt‖2 ≤ Δ is
violated. Now assume that at t = 1 all models are initialized with f1

1 = · · · = fm
1

and r1 = f1, i.e., for all local learners i it holds that ‖f i
1 − r1‖ = 0. A violation,

i.e., ‖f i
t − rt‖ >

√
Δ, occurs if one local model drifts away from rt by more

than
√

Δ. After a violation, a synchronization is performed and rt = f t, hence
‖f i

t −rt‖ = 0 and the situation is again similar to the initial setup for t = 1. In the
worst case, a local learner drifts continuously in one direction until a violation
occurs. Hence, we can bound the number of violations Vi(T ) at a single learner
i by the sum of its drifts divided by

√
Δ:

Vl(T ) ≤ 1√
Δ

T∑

t=1

‖f i
t − f i

t+1‖ =
1√
Δ

T∑

t=1

‖f i
t − ϕ̃(f i

t )‖︸ ︷︷ ︸
≤η�(fi

t )

≤ 1√
Δ

T∑

t=1

η�(f i
t ).

With this, we can bound the amount of points in time t ∈ [T ] where at least one
learner l has a violation, i.e., V (T ). In the worst case, all violations at all local
learners occur at different time points, so that we can upper bound V (T ) by the
sum of local violations Vi(T ) which is again upper bounded by the cumulative
sum of drifts of all local models:

V (T ) ≤
m∑

i=1

Vi(T ) ≤ 1√
Δ

T∑

t=1

m∑

i=1

η�(f i
t ) =

η√
Δ

LD(T,m).
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In the following theorem we bound the overall communication by combining
this bound on the number of synchronizations with an analysis of the amount
of bytes transfered per synchronization.

Theorem 7. Let A = (H, ϕ̃, �) be an online learning algorithm with approxi-
mately loss-proportional update rule ϕ̃ and ‖f − ϕ̃(f, x, y)‖ ≤ η�(f, x, y). The
amount of communication CD(T,m) of the dynamic protocol D running A in
parallel on m nodes until time T ∈ N with divergence threshold Δ is bounded by

CD(T,m) ≤ η√
Δ

LD(T,m)
(
2m

∣
∣ST

∣
∣ Bα

)
+ m

∣
∣ST

∣
∣ Bx

Proof. Assume that at time T , the dynamic protocol performs a synchroniza-
tion. Then, similar to the argument for the continuous protocol, the support
vector set at time T is similar for all learners and independent of the number
of synchronization steps before. In particular, it is the same if a synchronization
was performed in every time step. Thus, again the amount of bytes required for
sending the support vectors is bounded by m

∣
∣ST

∣
∣ Bx. Let θ : N → {0, 1} be an

indicator function such that θ(t) = 1 if at time t the dynamic protocol performed
a synchronization and θ(t) = 0 otherwise. Then, the amount of bytes required
to send all the support vector coefficients until time T is

T∑

t=1

θ(t)
m∑

i=1

(∣∣∣Si
t

∣∣∣+
∣∣St

∣∣
)

Bα ≤
T∑

t=1

θ(t)

︸ ︷︷ ︸
=VD(T )

m∑

l=1

2|ST |Bα ≤ η√
Δ

LD(T, m)

︸ ︷︷ ︸
Proposition 6

(
2m|ST |Bα

)

Together with the amount of bytes required for exchanging all support vectors
this yields CD(T,m) ≤ η√

Δ
LD(T,m)

(
2m|ST |Bα

)
+ m

∣
∣ST

∣
∣ Bx. 	


Note that the loss bounds for online learning algorithms are typically sub-
linear in T , e.g., optimal regret bounds for static target distributions are in
O(

√
T ). In these cases, the dynamic protocol has an amount of communication

in O(m2T
√

T ) which is smaller than O(m2T 2) of the continuously and periodic
protocols by a factor of

√
T .

In the original case of linear models instead, the dynamic protocol only trans-
mits m weight vectors of fixed size per synchronization. In this case the amount
of communication per synchronization is bounded by a constant. If for an online
learning algorithm A and the periodic protocol P it holds that LP(T,m) ≤
LA(mT ), then by Theorem4 it also holds that LD(T,m) ≤ LA(mT ). This
implies that the dynamic protocol is adaptive. In the following corollary, we
show that for linear models, the dynamic protocol is adaptive when using the
Stochastic Gradient Descent algorithm.

Corollary 8. The dynamic protocol D = (SGD, σΔ) using Stochastic Gradient
Descent SGD with linear models is adaptive, i.e.,

CD(T,m) ∈ O (mLSGD(mT ))
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Proof. The amount of synchronizations of the dynamic protocol is bounded by
V (T ) (see Proposition 6). In each synchronization, each learner transmits one lin-
ear model, i.e., one weight vector of fixed size to the coordinator. The coordinator
submits one averaged weight vector back to each learner. Thus, the amount of
communication per synchronization is bounded by cm ∈ N, where cm ∈ O (m).
Then, the total communication is bounded by

CD(T,m) ≤ cm
η√
Δ

LD(T,m) ∈ O (mLD(T,m)) .

The dynamic protocol retains the loss bound of Stochastic Gradient Descent [10],
i.e., LD(T,m) ≤ LSGD(mT ). 	

Unfortunately, from Theorem4 also follows that the dynamic protocol applied to
kernelized online learning algorithms that do not bound the size of their models
does not comply to the strict notion of adaptivity as given in Definition 1. That
is, because the model size and thus the size of each message to and from the
coordinator can grow with T . Nonetheless, the theorem guarantees that if the
learners do not suffer loss anymore, the dynamic protocol reaches quiescence.

In order to make the dynamic protocol adaptive in the strict sense of
Definition 1, the model size has to be bounded. For kernelized online learning in
streams, several model compression techniques have been proposed [12,15,20].
These techniques typically guarantee that the compression error is bounded, i.e.,
for the compressed model f̃ it holds that

∥
∥
∥f − f̃

∥
∥
∥ ≤ ε. From this directly fol-

lows that if the base algorithm uses a loss-proportional convex update rule ϕ, the
compressed version is an approximately loss-proportional convex update rule ϕ̃.

One approach to compressing the support vector expansion is to project a
new support vector on the span of the remaining ones and thus avoid adding
it to the support set. Another one is to truncate support vectors with small
coefficients. For the projection approach (e.g., described in [15]) the error bound
is independent of the learning algorithm. However, there is no bound on the
number of support vectors. Thus, even though the model size is reduced in
practice, there is no formal bound on the model size. For the truncation approach,
however, [12] have shown that an error bound as well as a bound on the number
of support vectors can be achieved when using Stochastic Gradient Descent.
Specifically, for a fixed model size of τ support vectors, they have shown that the
compression error is bound by

∥
∥
∥f − f̃

∥
∥
∥ ≤ ε ∈ O (

1
λ (1 − λ)τ

)
, where λ ∈ R is the

learning rate of the Stochastic Gradient Descent algorithm (SGD). Therefore, we
can follow that the dynamic protocol with SGD using kernel models compressed
by truncation is adaptive. Specifically for SGD, [4] have shown that periodic
synchronizations retain the serial loss bound of SGD. It is consistent in this
setting, because the dynamic protocol in turn retains the loss bounds of any
periodic protocol. Since it is both consistent and adaptive, the dynamic protocol
is efficient.
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(a) (b)

Fig. 2. (a) Trade-off between cumulative error and cumulative communication and
(b) cumulative communication over time of the dynamic protocol versus a periodic
protocol. 32 learners perform a stock price prediction task using SGD (learning rate η
and regularization parameter λ optimized over 200 instances, with η = 10−10, λ = 1.0
for the periodic protocol, and η = 1.0, λ = 0.01 for the dynamic protocol) updates,
either with linear models or with non-linear models (Gaussian kernel with number of
support vectors limited to 50 using the truncation approach of [12]).

4 Discussion

The dynamic protocol, extended to kernel methods, yields for the first time a
theoretically efficient tool to learn non-linear models for distributed real-time
services, in settings where communication is a major bottleneck. For that, it
can employ online kernel methods together with model compression techniques,
which reduce, or bound the number of support vectors. The efficiency of the
protocol is characterized by a novel criterion that ties a tight loss bound to the
required amount of communication—a criterion which is not satisfied by the
state of the art of periodically communicating protocols.

While we provided a theoretical analysis, the advantage of the dynamic pro-
tocol in combination with kernel methods can also be shown in practice: Fig. 2
shows the results of an experiment on financial data [9], where 32 learners pre-
dicted the stock price of a target stock. We can see that for this difficult learn-
ing task linear models perform poorly compared to non-linear models using a
Gaussian kernel function. Simultaneously, the communication required to peri-
odically synchronize these non-linear models is larger than for linear models by
more than two orders of magnitude. Using the dynamic protocol with kernel
models we could reduce the error by an order of magnitude compared to using
linear models (a reduction by a factor of 18). At the same time, the commu-
nication is reduced by more than three orders of magnitude compared to the
static protocol (by a factor of 2433), which is yet an order of magnitude smaller
than the communication when using linear models (by a factor of 10). Moreover,
within less than 2000 rounds, the dynamic protocol reaches quiescence, as it is
implied by the efficiency criterion.



818 M. Kamp et al.

A limit of the employed notion of efficiency is that it only takes into account
the sum of messages but not the peak communication. In large data centers,
where the distributed learning system is run next to other processes, the main
bottleneck is the overall amount of transmitted bytes and a high peak in com-
munication can often be handled by the communication infrastructure or evened
out by a load balancer. In smaller systems, however, high peak communication
can become a serious problem for the infrastructure and it remains an open
problem how it can be reduced. Note that the frequency of synchronizations in
a short time interval can actually be bounded by a trivial modification of the
dynamic protocol: local conditions are only checked after a mini-batch of exam-
ples have been observed. Thus, the peak communication is upper bounded in
the same way as with a periodic protocol, while still dynamically reducing the
overall amount of communication.

When analyzing the reason for practical efficiency, model compression has
proven to be a crucial factor, since storing and evaluating models with large
numbers of support vectors can become infeasible—even in serial settings. In
a distributed setting, transmitting large models furthermore induce high com-
munication costs, which is aggravated by averaging local models, because the
synchronized model consists of the union of all local support vectors. For the
model truncation approach of [12], we have shown that the efficiency criterion
is satisfied, but other model compression approaches might be favorable in cer-
tain scenarios. Thus, an interesting direction for future research is to study the
relationship between loss and model size of those model compression techniques
in order to extend the results on efficiency.

Also, alternative approaches to ensuring constant model size could be investi-
gated, e.g., a finite dimensional approximation of the feature map Φ : X → H of
a reproducing kernel Hilbert space H, such as Random Fourier Features [17]. It
remains an open problem how tight loss bounds combined with communication
bounds can be derived in these settings.

Finding the right divergence threshold for the dynamic protocol, i.e., one
that suits the desired trade-off between service quality and communication, is in
practice a neither intuitive nor trivial task. The threshold can be selected using
a small data sample, but the communication for a given threshold can vary over
time and is also influenced by other parameters of the learner. Thus, another
direction for future research is to investigate an adaptive divergence threshold.
This could allow for a more direct selection of the desired trade-off between
service quality (i.e., predictive performance) and communication.
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under grant 619491 (FERARI).

References

1. Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a computer: an introduc-
tion to the design of warehouse-scale machines. Synth. Lect. Comput. Archit. 8(3),
1–154 (2013)



Communication-Efficient Distributed Online Learning with Kernels 819

2. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

3. Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y.: Online passive-
aggressive algorithms. J. Mach. Learn. Res. 7, 551–585 (2006)

4. Dekel, O., Gilad-Bachrach, R., Shamir, O., Xiao, L.: Optimal distributed online pre-
diction using mini-batches. J. Mach. Learn. Res. 13, 165–202 (2012)

5. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Bandwidth-constrained queries in
sensor networks. VLDB J. 17(3), 443–467 (2008)

6. Gabel, M., Keren, D., Schuster, A.: Communication-efficient distributed variance
monitoring and outlier detection for multivariate time series. In: Proceedings of the
28th International Parallel and Distributed Processing Symposium (IPDPS), pp.
37–47. IEEE (2014)

7. Giatrakos, N., Deligiannakis, A., Garofalakis, M., Sharfman, I., Schuster, A.:
Prediction-based geometric monitoring over distributed data streams. In: Proceed-
ings of the 2012 ACM SIGMOD International Conference on Management of Data,
pp. 265–276 (2012)

8. Heires, K.: Budgeting for latency: if i shave a microsecond, will i see a 10x profit.
Securities Ind. News 22(1), 4–5 (2010)
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