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Abstract. In this paper, we leverage both deep learning and condi-
tional random fields (CRFs) for sequential labeling. More specifically,
we explore parameter initialization and randomization in deep CRFs
and train the whole model in a simple but effective way. In partic-
ular, we pretrain the deep structure with greedy layer-wise restricted
Boltzmann machines (RBMs), followed with an independent label learn-
ing step. Finally, we re-randomize the top layer weight and update the
whole model with an online learning algorithm – a mixture of perceptron
training and stochastic gradient descent to estimate model parameters.
We test our model on different challenge tasks, and show that this simple
learning algorithm yields the state of the art results. The data and soft-
ware related to this paper are available at https://github.com/ganggit/
deepCRFs.
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1 Introduction

Recent advances in deep learning [1,16,43] have sparked great interest in dimen-
sion reduction [15,44] and classification [16,26]. In a sense, the success of deep
learning lies on learned features, which are useful for supervised/unsupervised
tasks [1,4,11]. For example, the binary hidden units in the discriminative
Restricted Boltzmann Machines (RBMs) [12,25] and deep belief networks (DBN)
[16] can model latent features of raw data to improve classification. Unfortu-
nately, one major difficulty in deep learning [16] is structured output prediction
[31], where output space typically may have an exponential number of possible
configurations. As for sequential labeling, the joint classification of all the items
is also difficult because observations are of an indeterminated dimensionality
and the number of possible classes is exponentially growing in the length of the
sequences.

To address the sequential prediction, the architecture of recurrent neural
networks (RNNs) have cycles incorporating the activations from previous time
steps as input to the network to make a decision for the current input, which
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Fig. 1. (a) linear chain CRFs; (b) deep neural networks (for classification with 1 of K
(encoding) vector representation); (c) our deep neural networks for sequential labeling.
The two main differences between (b) and (c) are: (1) yi in (c) is a label sequence,
which has links between labels, while yi in (b) is a single label without correlation; (2)
the input of (c) is a sequence with multiple instances (or frames), while the input of
(b) is an independent instance (or vector).

makes RNNs better suited for sequence labeling tasks. Long short term memory
(LSTM), as an improved version of RNNs, shows good results on handwritten
recognition [13]. And bi-directional LSTM trained on unsegmented sequence
data has also outperformed the state of the art HMM-based system.

Another direction is to combine deep learning with CRFs for sequential label-
ing [9,28,33]. One of key advantages of linear CRFs can be attributed to its
exploitation on context information and its structured output prediction. How-
ever, linear CRFs with the raw data as input strongly restricts its representation
power for classification tasks. More recently, one trend is to generalize CRFs to
learn discriminative and non-linear representations, such as kernel CRFs [23],
hidden-unit CRFs [28,33] and CRFs with multilayer perceptrons [27,35]. As an
alternative, some studies have trained CRFs on features learned by unsupervised
deep learning [32]. Also the work in [9,33] has exploited to learn non-linear map-
pings by combing CRFs and neural networks. However, how to learn a better
deep CRFs model is still a challenge, considering the overfitting issue with large
parameter space and the non-convex objective function.

In this paper, we propose a deep model for sequential labeling, which inherits
both advantages of linear chain CRFs and deep learning. Hence, our model can
learn non-linear features and also handle structured output, refer to Fig. 1 for
visual understanding about the model. Because the deep CRFs model is non-
convex, it can be easily trapped into local minimum. Thus, how to learn a good
model and generalize well in unseen dataset is still an challenge. Compared to the
traditional deep CRFs [9,29,33], we take a different learning approach. We pre-
train our model with stacked RBMs, followed with an independent learning step
with backpropagation. Then, we re-randomize the top layer weight and optimize
the whole deep model using an online learning algorithm, which is a mixture
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of perceptron training and stochastic gradient descent (SGD). In particular, we
train the top layer with perceptron algorithm, while learning the weights of the
lower layers in the deep structure with SGD. Thus, our model is more powerful
than linear CRFs because the objective function learns latent non-linear features
so that target labeling can be better predicted.

Our contributions: (1) an unified objective function to handle sequential data
with or without patterns; (2) the independent learning step for parameter ini-
tialization and the re-randomization of the top layer weight, which we think is
vital to handle overfitting and find a better local minimum in training the deep
neural network; (3) the online learning approach to update model parameters,
where the context parameters of CRFs in the top layer are trained with per-
ceptron algorithm and the lower level weights of the deep neural network are
updated with SGD. Lastly, we also introduce the regularization terms to handle
overfitting in the deep neural network. We test our model over a range of tasks
and show that it yields accuracy significantly better than the state of the art.

2 Sequential Labeling with Deep Learning

Let D = {〈xi,yi〉}Ni=1 be a set of N training examples. Each example is a pair of
a time series 〈xi,yi〉, with xi = {xi,1,xi,2, ...,xi,Ti

} and yi = {yi,1, yi,2, ..., yi,Ti
},

where xi,t ∈ R
d is the i-th observation at time t and yi,t is the corresponding label

(we indicate its encoded vector as yi,t that uses a so-called 1-of-K encoding).
Linear first-order CRFs [24] is a conditional discriminative model over the label
sequence given the data

p(yi|xi) =
exp{−E(xi,yi)}

Z(xi)
(1)

where Z(xi) is the partition function and E(xi,yi) is the energy function given by

−E(xi,yi) =yT
i,1π + yT

i,Ti
τ

+
Ti∑

t=1

(xT
i,tWyi,t + bTyi,t) +

Ti∑

t=2

yT
i,t−1Ayi,t (2)

where yT
i,1π and yT

i,Ti
τ are the initial-state and final-state factors respectively,

bTyi,t is the bias term for labels, A ∈ R
K×K represents the state transition para-

meters and W ∈ R
d×K represents the parameters of the data-dependent term.

Compared to linear SVMs, the linear CRFs has an additional item yT
i,t−1Ayi,t

to model the label correlation. However, one of the main disadvantages of linear
CRFs is the linear dependence on the raw input data. Thus, we introduce our
sequential labeling model with deep feature learning, which leverages both con-
text information, as well as the nonlinear representations from deep learning [15].
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2.1 Objective Function

Although it is possible to leverage the deep neural networks for structured predic-
tion, its output space is explosively growing because of non-determined length of
sequential data. Thus, we consider a compromised model, which combine CRFs
and deep learning in an unified framework, refer Fig. (1). On the one hand, we
hope the independent label prediction is as accuracy as possible via the represen-
tation learning. On the other hand, we need to handle overfitting problem in the
deep network. We propose an objective function with L layers neural network
structure,

L(D;θ,ω) = −
N∑

i=1

logp(yi,1, . . . ,yi,Ti
|hi,1, . . . ,hi,Ti

)

+
λ1

2

N∑

i=1

Ti∑

t=1

|| fL ◦ fL−1 ◦ · · · ◦ f1︸ ︷︷ ︸
L times

(xi,t) − yi,t||2

+ λ2||θ||2 + λ3||ω|| (3)

where θ and ω are the top layer parameters and lower layer (l = {1, ..., L − 1})
parameters respectively, which will be explained later. The first row on the right
side of the equation is from the linear CRFs in Eq. (1), but with latent features.
The conditional likelihood depends respectively on θ and the latent non-linear
features hi = {hi,1, ..,hi,Ti

} in the coding space, with

logp(yi,1, . . . ,yi,Ti
|hi,1, . . . ,hi,Ti

)

=
Ti∑

t=2

yT
i,t−1Ayi,t +

Ti∑

t=1

(
hT
i,tWyi,t + bTyi,t

)

+yT
i,1π + yT

i,Ti
τ − log(Z(hi)) (4)

and non-linear mappings hi is the output with L − 1 layers neural network, s.t.

hi = fL−1 ◦ fL−2 ◦ · · · ◦ f1︸ ︷︷ ︸
L−1 times

(xi) (5)

where ◦ indicates function composition, and fi is logistic function with the weight
parameter Wl respectively for l = {1, .., L − 1}, refer more details in Sect. 2.2.
With a bit abuse of notation, we denote hi,t = f1→(L−1)(xi,t).

The least square (the second term) in the right hand side of Eq. (3) is for
deep feature learning, with the top layer defined as

fL ◦ fL−1 ◦ · · · ◦ f1︸ ︷︷ ︸
L times

(xi,t)

=f1→L(xi,t) = fL(hi,t) = hT
i,tW + cT (6)

where W has been defined in Eq. (4), and c is the bias term. Note that W is the
same in both Eqs. 4 and 6. Hence, the second term in Eq. (3) can be thought as
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the independent label prediction without considering context information. Note
that other objective functions such as softmax (which has the same gradient
as least square, in other words, the model updating with SGD is the same as
here) can be applied here too. The weighing variable λ1 can control the balance
between the first term and the second one on the RHS in Eq. (3). If λ1 → +∞,
then Eq. (3) can be thought as deep learning [15] for classification without con-
text information, and it can handle the cases where outputs are independent (no
significant patterns in the label sequences). If λ1 → 0, then Eq. (3) is the CRFs
with non-linear deep feature learning, which generalizes the linear CRFs to learn
non-linear deep mappings. The main purpose we incorporate the second term in
our model is to introduce this parameter initialization step via the independent
learning (see further). Note that we can vary λ1 to achieve this purpose.

The last two terms in Eq. (3) are for regularization on all parameters with θ =
{A,W,π, τ , b, c}, and ω = {Wl|l ∈ [1, .., L − 1]}. We add the �2 regularization
to θ as most linear CRFs does, while we have the �1-regularized term on weight
parameters ω in the deep neural network to avoid overfitting in the learning
process.

The aim of our objective function in Eq. (3) is for sequential labeling, which
explores both the advantages of Markov properties in CRFs and latent represen-
tations in deep learning. Our model is different from the common deep learning
structure in Fig. 1(b). Firstly, the input to our model in Fig. 1(c) is the sequential
data, such as sequences with non-determined length, while the input to Fig. 1(b)
is generally an instance with fixed length. Secondly, our model can predict struc-
tured outputs or label sequences, while the output in Fig. 1(b) is just one label
for each instance, which is independent from each other. Note that we use the
first-order CRFs for clarity in Eq. 4, which can be easily extended to the second
or high-order cases. Moreover, our model is also different from other deep CRFs
[9,34]. Our mixture objective function can handle sequential data with or with-
out patterns. And we have the independent label learning (a pretraining step in
our model) to learn better representations. Lastly, we use an online algorithm
in our deep learning model for parameter updating, which has the potential to
handle large scale dataset.

2.2 Parameter Learning

We use RBMs to initialize the weights layer by layer greedily, with Contrastive
Divergence [16] (we used CD-1 in our experiments). Then we compute the sub-
gradients w.r.t. θ and ω in the objective function, and initialize the whole deep
CRFs with independent learning. Finally, we re-randomize the top layer weight
and update the whole framework with online learning.

Initialization: The second term on the right hand side of Eq. (3) is from the
deep belief network (DBN) for classification [16]. In our deep model, the weights
from the layer 1 to L − 1 are Wl respectively, for l = {1, .., L − 1}, and the
top layer L has weight W. We first pre-train the L-layer deep structure with
RBMs layer by layer greedily. Specifically, we think RBM is a 1-layer DBN, with
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weight W1. Thus, DBN can learn a parametric nonlinear mapping from input
x to output h, f : x → h. For example, for 1-layer DBN, we have h = f1(x) =
logistic(W1

T [x, 1]), where we extend x ∈ R
d into [x, 1] ∈ R

(d+1) in order to
handle bias in the non-linear mapping. Note that we use the logistic function
from layer 1 to L − 1, and the top layer is a linear mapping with weight W in
our deep neural network.

After initializing all weights in the deep neural network, we use the indepen-
dent label learning by minimizing λ1

∑N
i=1

∑Ti

t=1 || fL ◦ fL−1 ◦ · · · ◦ f1︸ ︷︷ ︸
L times

(xi,t)−yi,t||

with L-BFGS (backpropagation is used to compute sub-gradient w.r.t. weight in
each layer) to fine-tune all the weights in the deep neural network. More specif-
ically, to learn the initial weights in the deep network, we think each instance
xi,t ∈ xi has its corresponding label yi,t ∈ yi independently. Then, the parame-
ters can be finetuned with backpropagation [15]. Note that it does not leverage the
context information in this stage, and we will show the independent label learning
step is helpful to boost the recognition accuracy in the experiments. Finally, we
will update the parameters θ and ω in an online fashion simultaneously, which
will be introduced in the following parts.

Learning: After we initialize the deep CRFs with independent learning and re-
randomization, we need to minimize the final objective function L(D;θ,ω) in
Eq. (3). Because we introduce the deep neural network here for feature learning,
the objective is not convex anymore. However, we can find a local minimum in
Eq. (3). In our learning framework, we optimize the objective function with an
online learning algorithm, by mixing perceptron training and stochastic gradient
descent.

Firstly, we can calculate the (sub)gradients w.r.t. all parameters. Considering
different regularization methods for θ and ω respectively, we can calculate gradi-
ents w.r.t. them separately. As for the parameters in the negative log likelihood
in Eq. 3, we can compute the gradients w.r.t. θ as follows

∂L
∂A

=
N∑

i=1

Ti∑

t=2

yi,t−1(yi,t)T − γi,t−1(γi,t)
T ; (7a)

∂L
∂π

=
N∑

i=1

(yi,1 − γi,1); (7b)

∂L
∂τ

=
N∑

i=1

(yi,Ti
− γi,Ti

); (7c)

∂L
∂b

=
N∑

i=1

( Ti∑

t=1

(yi,t − γi,t)
)
; (7d)

∂L
∂W

=
N∑

i=1

Ti∑

t=1

(
hi,t(yi,t − γi,t)

T

+ λ1f1→(L−1)(xi,t)(yi,t − ŷi,t)T
)

(7e)
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where γi,t ∈ R
K is the vector of K dimensions, which can be thought as the

posterior probability for labels in the sequence and will be introduced in Sect. 2.3,
and ŷi,t = f1→L(xi,t) is the output from Eq. (6). Note that it is easy to derive
the gradients of the �2 regularization term w.r.t. θ in the objective in Eq. (3),
which can be added to the gradients in Eq. (7).

As for the gradients of weights ω = {Wl|l ∈ [1, .., L − 1]}, we first use
backpropagation to get the partial gradient in the neural network, refer to [15]
for more details. Then the gradient of the �1 term in Eq. (3) can be attached to
get the final gradients w.r.t. Wl for l = {1, .., L − 1}.

Finally, we use a mixture of perceptron learning and stochastic gradient
descent to optimize the objective function. There are various optimization meth-
ods, such as L-BFGS [3,37], stochastic gradient descent (SGD) and perceptron-
based learning [28]. L-BFGS as a gradient descent method, has been widely used
to optimize weights in the deep structure [16]. However, it can be slow, and there
are no guarantees if there are multiple local minima in the error surface. SGD
and perceptron training both are the online learning algorithms by updating the
parameters using the gradient induced by a single time series, so they have sig-
nificant computational advantages over L-BFGS. Furthermore, perceptron-based
online learning can be viewed as a special case of SGD, but it is more flexible
than SGD on parameter updating (i.e. parallelization). In our experiments, we
tried L-BFGS, but it can be easily trapped into the bad local minimum, and per-
forms worse than other optimization methods in almost all experiments. Thus,
in this work, we use perceptron-based learning for the CRF related parameters
and stochastic gradient descent for the weights in the deep neural structure.

If the perceptron incorrectly classifies a training example, each of the input
weights is nudged a little bit in the right direction for that training example.
In other words, we only need to update the CRF model only for frames that
are misclassified in each training example. To update the CRF’s parameters,
we need to find the most violated constraints for each example. Basically, given
a training example 〈xi,yi〉, we infer its most violated label y∗

i . If the frame
is misclassified, then it directly performs a type of stochastic gradient descent
on the energy gap between the observed label sequence and the predicted label
sequence. Otherwise, we do not need to update the model parameters. Thus, for
the parameters θ from the negative log likelihood in Eq. (3), we first project xi

into the code hi according to Eq. (5). Then, the updating rule takes the form
below

θ ← θ + ηθ
∂

∂θ

(
E(hi,yi) − E(hi,y∗

i )
)

(8)

where y∗
i is the most violated constraint in the misclassificated case, and ηθ is

the step size. Note that the posterior probability γi,t ∈ R
K in Eq. (7) should be

changed into the hard label assignment y∗
i,t in the inference stage. Note that this

is the key difference between perceptron training (using hard label) and SGD
(using label likelihood) while updating parameters.

While for the weights ω = {Wl|l ∈ [1, .., L − 1]} in the deep neural network,
we first use backpropagation to compute the gradients, and then update it as
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follows
ω ← ω − ηω

∂L
∂ω

(9)

where ηω is the learning rate to update the parameters. Note that one vital step
before our online learning over the parameters is that we re-randomize the top
layer weight in the deep neural network. We note that this randomization step
is very important for the model to generalize well in the testing data. Note that
in the independent learning step, we already have trained a very good model.
However, it may overfit to the data and trap into a bad local minimum. For
example, the parameters in all layers have fitted the data well. Thus, if we only
introduce additional CRF parameters (i.e. the transition matrix) into our whole
framework, it may have no chance to update the low lever weights in the neural
network (because of overfitting). On the contrary, if we re-randomize the top
layer weight, we can update all parameters effectively.

2.3 Inference

Given the observation xi = {xi,1, ...,xi,Ti
}, we first use Eq. (5) to compute the

non-linear code hi = {hi,1, ...,hi,Ti
}, and then we use Viterbi algorithm [36] to

infer labels. To simplify the problem, we assume the first-order CRFs here. To
estimate the parameters θ, there are two main inferential problems that need
to be solved during learning: (1) the posterior probability (or the marginal dis-
tribution of a label given the codes) γi,t(k) = p(yi,t = k|hi,1, ...,hi,Ti

); (2) the
distribution over a label edge ξi,t(j, k) = p(yi,t = j, yi,t+1 = k|hi,1, ...,hi,Ti

).
Apparently, the inference problem can be solved efficiently with Viterbi algo-
rithm [2,36].

For the given hidden sequence hi = {hi,1, ...,hi,Ti
}, we assume the corre-

sponding states {qi,1, ..., qi,Ti
}. Furthermore, we define the forward messages

αi,t(k) ∝ p(yi,1, .., yi,t, qi,t = k|hi,1, ...,hi,Ti
), and the backward messages βi,t(k)

∝ p(yi,t+1, .., yi,Ti
|qi,t = k,hi,1, ...,hi,Ti

)

αi,t+1(j) =
[ K∑

k=1

αi,t(k)Akj

]
B(j, yi,t+1); (10)

βi,t(j) =
K∑

k=1

AjkB(k, yi,t+1)βi,t+1(k); (11)

where B(k, yi,t) is the probability to emit yi,t at the state k. We can compute it
as follows

B(:, yi,t) = exp{hT
i,tW + bT + λ1fL(hi,t)} (12)

After calculating αi,t+1(j) and βi,t(j), we can compute the marginal probability
for γi,t and ξi,t respectively

γi,t(k) ∝ αi,t(k)βi,t(k), (13)
ξi,t(k, j) ∝ αi,t(k)AkjB(j, yi,t+1)βi,t+1(j); (14)
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Then, we can compute γi,t in Eq. (7), which is the concatenation: [γi,t(1), ...,
γi,t(K)].

In the testing stage, the main inferential problem is to compute the most likely
label sequence y∗

1,...,T given the data x1,...,T by argmaxy′1,...,T p(y′1,...,T |x1,...,T ),
which can be addressed similarly using the Viterbi algorithm mentioned above.

The learning algorithm is shown in Algorithm 1. The steps 2 and 3 are the
pretraining processes (independent training and re-randomization) in our model,
which is different from traditional deep CRFs [9,28,33]. There two steps initialize
the model parameters, which offers the advantages over traditional deep CRFs
approaches and makes our model to yield significantly better results, see further
in the experimental parts. Also our online mixture learning strategy is different
from traditional approaches.

Algorithm 1. Deep CRFs with online learning
Input: sequential training data D = {〈xi,yi〉}N

i=1, C, λ1 and λ2, ηω , ηθ , iterations T
Output: ω and θ

1: Initialize the deep neural networks layer by layer with RBMs ω = {Wl|l ∈ [1, .., L−
1]} and the top layer weight W;

2: Fine-tune the deep neural network parameters (ω and W) without context infor-
mation, just like to learn a deep SVM classifier;

3: Re-randomize the top layer weight W;
4: Learn all parameters of our deep CRFs online, including ω, W and correlation

matrix A;
5: Return ω, W and A;

3 Experiments

To test our method, we compared our method to the state of the art approaches
and performed experiments on four sequential labeling tasks: (1) optical charac-
ter recognition, (2) labeling questions and answers, (3) protein secondary struc-
ture prediction, and (4) part-of-speech tagging. Below, we described the datasets
we used and also the parameter setting in the experiments.

3.1 Data Sets

1. The OCR dataset [42] contains data with 6, 877 handwritten words, in which
there are total 55 unique words, and each word xi is represented as a series
of handwritten characters {xi1, ...,xi,Ti

}. The data consists of a total of 52, 152
characters (i.e., frames), with 26 unique classes. Each character is a binary image
of size 16 × 8 pixels, leading to a 128-dimensional binary feature vector.
2. The FAQ data set [30] contains data of 48 files on questions and answers,
with a total of 55,480 sentences (i.e., frames). Each sentence is a 24- dimensional
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binary feature that describes lexical characteristics of the sentence. Each sentence
in the FAQ data set belongs to one of four labels: (1) question, (2) answer,
(3) header, or (4) footer.
3. The CB513 contains amino acid structures of 513 proteins [6], and has been
widely used for protein secondary structure prediction. For each of the proteins, it
has 20-dimensional position-specific score matrix features. In the experiment, we
concatenate the features from the surrounding 13 frames into the 260 dimensional
vector [28]. As common in protein secondary structure prediction, we convert
the eight-class labeling into a three-class labeling. The resulting data set has 513
sequences with total 74, 874 frames (260 dimensions), belonging to 3 classes.
4. The Penn Treebank corpus1 has 74, 029 sentences with a total of 1, 637, 267
words. The whole data set contains 49, 115 unique words, and each word in each
sentence is labeled according to its part of speech with total 43 different tags. To
represent each word, all features are measured in a window with width 3 around
the current word, which leads to a total of 212, 610 features. If we use 1000
hidden nodes, then we need to store 2 × 108 parameters in the one-layer neural
network. Considering the high storage demanding for the personal computer, we
calculated the frequency for each dimension in the total 212, 610 features, and
selected the most frequent 5000 features as our codebook. Then we can represent
each word with 5000 dimensions in our experiment. All the four data sets in [28]
are available on the author’s website2.

3.2 Experimental Setup

In our experiments, we randomly initialized the weight W by sampling from
the normal Gaussian distribution, and all other parameters in θ to be zero
(i.e. biases b and c, and the transition matrix A all to be zero). As for ω =
{Wl|l ∈ [1, .., L−1]}, we initialized them with DBN, which had been mentioned
before. As for the number of layers and the number of hidden units in each layer,
we set differently according to the dimensionality for different datasets. In all
the experiments, we use the 3-layer deep neural networks on the four datasets.
Considering the OCR dataset has 128 dimensional binary feature, while FAQ is
the dataset with 24 dimensional vector, we set the number of hidden nodes [100
100 64] in each layer respectively on both the OCR dataset and FAQ dataset.
For the CB513 dataset, we set the number of hidden units to be [400 200 100].
For the treebank dataset, the hidden units [1000 400 200] are used in the 3-layer
network. We did not try other deep structure in the experiments.

After weight initialization with independent learning, we set λ1 = 0 and then
used perceptron training [12] to estimate the CRF related parameters and SGD
to learn the weights in the deep neural network. We did not use regularization
by setting λ2 = 0 in perceptron learning, and set λ3 = 2 × 10−4 for SGD
weights in the deep network. From the base step size, we computed parameter-
specific step sizes ηθ and ηω as suggested by [12]. For each dataset, we divided

1 www.cis.upenn.edu/∼treebank.
2 https://github.com/ganggit/deepCRFs.

www.cis.upenn.edu/~treebank
https://github.com/ganggit/deepCRFs
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it into 10 folds (9 folds as the training set, and the rest as the testing/validation
set), and performed 100 full sweeps through the training data, to update the
model parameters. We tuned the base step size based on the error on a small held-
out validation set. Unless otherwise indicated, we use the average generalization
error to measure all methods in 10-fold cross-validation experiments.

3.3 Results

We test our method on the four data sets mentioned above with the second-
order CRFs with deep learning, and compare our method with linear CRFs,
deep neural networks, traditional deep CRFs and LSTM. We also test whether
the pretraining step: independent learning and re-randomization of the top layer
weight is helpful or not in the sequential labeling tasks.

Table 1. The experimental comparisons on the OCR dataset. Our method (without
pretraining) is from the result without steps 2 and 3 in Algorithm 1. The results reveal
the merits of our method over other methods.

Hand-written recognition (Error rate %)

Linear-chain CRF [9] 14.2

Max-margin Markov net [9] 13.4

Searn [8] 9.09

SVM + CRF [17] 5.76

Deep learning (DBN+Labeling) [16] 4.0

NeuroCRFs (Deep learning + CRFs)[9] 4.44

Cond. graphical models [34] 2.7

LSTM [19] 0.40

Bidirectional LSTM [19] 0.36

Hidden-unit CRF [28] 1.9

Our method (without pretraining) 1.56

Our method 0.2

In Table 1, we compared the performance of our method with the performance
of competing models on the handwriting recognition task. It shows that the
pretraining stage (independent learning and re-randomization) in our model is
helpful to improve the recognition accuracy (boosting error rate from 1.56 %
to 0.2 %). It also shows that the label correlation is helpful in this case. For
example, the deep learning without label correlation yields accuracy 4.0 %, while
is significantly lower than our model. Compared to previous deep CRFs and
RNNs, our method with all steps in Algorithm 1 yields a generalization error
of 0.2%, while the best performance of other methods is 0.36%. Note that we
change the LSTM code a little bit in [19] to handle the handwritten images.
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Table 2. The comparison (generalization errors) on the FAQ dataset using different
methods. It shows that our method is significantly better than the Hidden-unit CRF.

Model Error rate (%)

Linear SVM 9.87

Linear CRF [28] 6.54

NeuroCRFs (Deep learning + CRFs)[9] 6.05

Hidden-unit CRF [28] 4.43

Deep learning (DBN + Labeling) [16] 7.75

Our method (without pretraining) 7.44

Our method 3.34

It demonstrates that our learning approach is significantly better than other
methods, and the deep structure is definitely helpful than the shallow models.

On the FAQ data set, the lowest generalization error of hidden-unit CRFs is
4.43%, compared to 3.34 % for our method in Table 2. And again, our method
outperforms other competitive baselines. It also shows that the CRF with deep
feature learning (3 layers) in this case, is better than the one hidden layer CRF.
Note that we just used the original 24 dimension features in the experiment,
instead of extending the feature set into a 24 + 242 = 600-dimensional feature
representation in [28].

We also test our method on the protein secondary structure prediction task.
The results of these experiments are presented in Table 3. In particular, our
method achieves a generalization error of only 3.16%, compared to 19.5% error
with the conditional neural field on the CB513 data set. The results presented

Table 3. The comparison on the CB513 dataset for protein secondary structure predic-
tion task. It demonstrates that our method significantly outperforms other approaches.
And the pretraining step with the independent label learning is very helpful to boost
the performance.

Model Error rate (%)

PSIRED [18] 24.0

SVM [14] 23.4

SPINE [10] 23.2

YASSP [20] 22.2

Cond. neural field (Deep learning + CRFs)[33] 19.5

NeuroCRFs (Deep learning + CRFs)[9] 28.4

Hidden-unit CRF [28] 20.2

Deep learning (DBN+Labeling) [16] 8.57

Our method (without pretraining) 27.1

Our method 3.16
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Table 4. The experimental comparison on the treebank data set by varying the number
of training data. It demonstrates that given few training data, our method is generalized
well and more robust in the recognition task.

Model generalization error rate (%)

1000 2000 4000 5000 8000 10000 20000

Linear SVM 12.22 12.0 10.6 9.33 8.96 8.71 8.27

Deep learning [15] 58.73 11.4 9.44 9.28 8.36 8.17 7.60

Hidden-unit CRF [28] 10.2 8.74 7.59 7.45 7.02 6.79 6.29

Our method 9.79 7.97 6.66 6.5 6.26 6.24 6.01

in the figure indicate that the CRFs with deep feature learning can significantly
improve the performance, compared to hidden-unit CRFs.

Lastly, we also tested our method on part-of-speech tagging task. Note that
we already take context information into consideration by using a window width
3 for feature representations. And the final representation is based on only 5,000
codebooks because of storage problem for model parameters. To test whether
our method can tackle overfitting problem effectively, we randomly sampled a
subset from the Penn Treebank corpus, and did the 10 fold cross validation. We
show the experimental results in Table 4. It demonstrates that when there’s a
few data set available for training, deep learning with L-BFGS has overfitting
problems. As the number of training data increasing, the performance of the
deep learning also is increasing. While our method outperforms other baselines
remarkably, and show stable and better performance with increasing training
data. It also shows that our method can generalize well effectively, and it is
more robust with few training data in the recognition task.

4 Related Work

Deep learning has significantly improvement on classification, such as object
recognition, handwriting and natural language processing [5,19,22]. However,
to predict structured output with deep learning is still a challenge in machine
learning [31]. The difficulty of this problem is that the input and output data have
non-determinated length, which may lead to an exponential number of possible
configurations. Recently, a conditional RMBs is proposed for structured output
prediction [31]. Unfortunately, the model is shallow with only one hidden layer,
and also cannot deal with large output configurations well. Typically, it either
considers a small output space or uses semantic hashing in order to efficiently
compute a small set of possible outputs to predict. LSTM has attracted great
attention for sequential labeling. For example, a 2-branch LSTM model has been
proposed for machine translation [40]. Also LSTM is combined with CNN for
image to text task [19].

On the other hand, graphic models, such as hidden Markov model (HMM)
and CRFs have been an popular method for segmentation and labeling time
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series data [24]. And CRFs, as a discriminative probabilistic model for struc-
tured prediction [24], has been widely used in natural language processing [38],
handwriting recognition [28,42] and scene parsing [39]. Over the last decade,
many different approaches have been proposed to improve its performance on
the sequential labeling problems. One trend is to extend the linear CRFs into
the high-order graphical model, by exploiting more context information [7,21].
However, the main weakness of those approaches is the time-consuming infer-
ence in the high-order graphical model. Another trend in the CRFs is to discover
discriminative features to improve classification performance. One related work
is a multilayer CRF (ML-CRF) [35]. The system uses a multilayer perceptron
(MLP), with one layer of hidden units, with a linear activation function for the
output layer units and a sigmoid activation function for the hidden layer units.
Similarly, hidden-unit CRFs [28,33] also assumes one-hidden layer for feature
representation. The main idea of these two methods is similar to our approach
here, in that we also transform the input to construct hidden features from the
data so that these hidden units are discriminative in classification. But, unlike
those systems, our model inherits the advantages of deep learning, and feature
functions do not have any direct interpretation and are learned implicitly. More-
over, the deep features learned with large hidden units are powerful enough to
represent the data, and generalize well in the classification tasks. As demon-
strated by previous work, the performance of linear CRFs on a given task is
strongly dependent on the feature representations [41]; while deep learning [16]
can learn representations that are helpful for classification. Thus, it is possible
to unify these two methods into one framework.

Our sequential labeling model with deep learning also bears some resem-
blance to approaches that train a deep network, and then train a linear CRF or
Viterbi decoder on the output of the resulting network [9,29,32]. However, these
methods differ from our approach in that (1) The initialization step in our app-
roach with independent learning and weight re-randomization can significantly
boost performance; (2) they do not learn all state-transition, data-dependent
parameters and weights in the deep networks jointly. As a result, the top hidden
units in these models may not discover latent distributed representations that are
discriminative for classification. (3) Previous approaches [27,35] does not take
an online learning strategy to estimate model parameters. But we consider to
update the weights with an online algorithm in our deep learning model, which
can learn more useful representations [1] to handle large scale dataset. Our work
here inherits both advantages of CRFs and deep learning. Thus, our model can
effectively handle structured prediction, and also learn discriminative features
automatically for better sequential labeling under an unified framework.

5 Conclusions

In this paper, we introduce a model for sequential labeling with online deep
CRFs. More specifically, we propose a mixture objective function, which learns
the non-linear features with deep learning and predict labels with CRFs in the
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sequential data. Hence, our approach leverage both feature learning and context
information for the classification and segmentation of time series. One vital issue
arising while training the deep model is how to handle overfitting and local bad
minimum. We take an effective initialization step (with dependent label learning
and re-randomization) to address this problem. Finally, we use a simple but
efficiently online learning method to update the whole model (end-to-end), which
has the potential to handle large-scale learning problem. In the experiments, we
show that our model outperforms the current state of the art remarkably on a
wide range of tasks.
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