
Graphical Model Sketch

Branislav Kveton1(B), Hung Bui1, Mohammad Ghavamzadeh1,
Georgios Theocharous1, S. Muthukrishnan2, and Siqi Sun3

1 Adobe Research, San Jose, CA, USA
{kveton,hubui,ghavamza,theochar}@adobe.com

2 Department of Computer Science, Rutgers, New Brunswick, NJ, USA
muthu@cs.rutgers.edu

3 TTI, Chicago, IL, USA
siqi.sun@ttic.edu

Abstract. Structured high-cardinality data arises in many domains,
and poses a major challenge for both modeling and inference. Graphical
models are a popular approach to modeling structured data but they are
unsuitable for high-cardinality variables. The count-min (CM) sketch is
a popular approach to estimating probabilities in high-cardinality data
but it does not scale well beyond a few variables. In this work, we bring
together the ideas of graphical models and count sketches; and propose
and analyze several approaches to estimating probabilities in structured
high-cardinality streams of data. The key idea of our approximations is
to use the structure of a graphical model and approximately estimate its
factors by “sketches”, which hash high-cardinality variables using ran-
dom projections. Our approximations are computationally efficient and
their space complexity is independent of the cardinality of variables. Our
error bounds are multiplicative and significantly improve upon those of
the CM sketch, a state-of-the-art approach to estimating probabilities
in streams. We evaluate our approximations on synthetic and real-world
problems, and report an order of magnitude improvements over the CM
sketch.

1 Introduction

Structured high-cardinality data arises in numerous domains, and poses a major
challenge for modeling and inference. A common goal in online advertising is
to estimate the probability of events, such as page views, over multiple high-
cardinality variables, such as the location of the user, the referring page, and the
purchased product. A common goal in natural language processing is to estimate
the probability of n-grams over a dictionary of 100k words. Graphical models
[9] are a popular approach to modeling multivariate data. However, when the
cardinality of random variables is high, they are expensive to store and reason
with. For instance, a graphical model over two variables with M = 105 values
each may consume M2 = 1010 space.

A sketch [17] is a data structure that summarizes streams of data such that
any two sketches of individual streams can be combined space efficiently into
c© Springer International Publishing AG 2016
P. Frasconi et al. (Eds.): ECML PKDD 2016, Part I, LNAI 9851, pp. 81–97, 2016.
DOI: 10.1007/978-3-319-46128-1 6

82 B. Kveton et al.

the sketch of the combined stream. Numerous problems can be solved efficiently
by surprisingly simple sketches, such as estimating the frequency of values in
streams [3,4,15], finding heavy hitters [5], estimating the number of unique values
[7,8], or even approximating low-rank matrices [12,18]. In this work, we sketch
a graphical model in a small space. Let (x(t))n

t=1 be a stream of n observations
from some distribution P , where x(t) ∈ [M]K is a K-dimensional vector and
P factors according to a known graphical model G. Let P̄ be the maximum-
likelihood estimate (MLE) of P from (x(t))n

t=1 conditioned on G. Then our goal
is to approximate P̄ with P̂ such that P̂ (x) ≈ P̄ (x) for any x ∈ [M]K with at
least 1 − δ probability; in the space that does not depend on the cardinality M
of the variables in G. In our motivating examples, x is an n-gram or the feature
vector associated with page views.

This paper makes three contributions. First, we propose and carefully ana-
lyze three natural approximations to the MLE in graphical models with high-
cardinality variables. The key idea of our approximations is to leverage the
structure of the graphical model G and approximately estimate its factors
by “sketches”. Therefore, we refer to our approximations as graphical model
sketches. Our best approximation, GMFactorSketch, guarantees that P̂ (x) is a
constant-factor multiplicative approximation to P̄ (x) for any x with probability
of at least 1 − δ in O(K2 log(K/δ)Δ−1(x)) space, where K is the number of
variables and Δ(x) measures the hardness of query x. The dependence on Δ(x)
is generally unavoidable and we show this in Sect. 5.4. Second, we prove that
GMFactorSketch yields better approximations than the count-min (CM) sketch
[4], a state-of-the-art approach to estimating the frequency of values in streams
(Sect. 6). Third, we evaluate our approximations on both synthetic and real-
world problems. Our results show that GMFactorSketch outperforms the CM
sketch and our other approximations, as measured by the error in estimating P̄
at the same space.

Our work is related to Matusevych et al. [13], who proposed several exten-
sions of the CM sketch, one of which is GMFactorSketch. This approximation
is not analyzed and it is evaluated only on a graphical model with three vari-
ables. We present the first analysis of GMFactorSketch, and prove that it is
superior to other natural approximations and the CM sketch. We also evaluate
GMFactorSketch on an order of magnitude larger problems than Matusevych
et al. [13]. McGregor and Vu [14] proposed and analyzed a space-efficient stream-
ing algorithm that tests if the stream of data is consistent with a graphical model.
Several recent papers applied hashing to speeding up inference in graphical mod-
els [1,6]. These papers do not focus on high-cardinality variables and are only
loosely related to our work, because of using hashing in graphical models. We
also note that the problem of representing conditional probabilities in graphical
models efficiently has been studied extensively, as early as in Boutilier et al. [2].
Our paper is different from this line of work because we do not assume any spar-
sity or symmetry in data; and our approximations are suitable for the streaming
setting.

Graphical Model Sketch 83

We denote {1, . . . , K} by [K]. The cardinality of set A is |A|. We denote
random variables by capital letters, such as X, and their values by small letters,
such as x. We assume that X = (X1, . . . , XK) is a K-dimensional variable; and
we refer to its k-th component by Xk and its value by xk.

2 Background

This section reviews the two main components of our solutions.

2.1 Count-Min Sketch

Let (x(t))n
t=1 be a stream of n observations from distribution P , where x(t) ∈

[M]K is a K-dimensional vector. Suppose that we want to estimate:

P̃ (x) =
1
n

n∑

t=1

1
{

x = x(t)
}

, (1)

the frequency of observing any x in (x(t))n
t=1. This problem can be solved in

O(MK) space, by counting all unique values in (x(t))n
t=1. This solution is imprac-

tical when K and M are large. Cormode and Muthukrishnan [4] proposed an
approximate solution to this problem, the count-min (CM) sketch, which esti-
mates P̃ (x) in the space independent of MK . The sketch consists of d hash tables
with m bins, c ∈ N

d×m. The hash tables are initialized with zeros. At time t,
they are updated with observation x(t) as:

c(i, y) ← c(i, y) + 1
{

y = hi(x(t))
}

for all i ∈ [d] and y ∈ [m], where hi : [M]K → [m] is the i-th hash function.
The hash functions are random and pairwise-independent. The frequency P̃ (x)
is estimated as:

Pcm(x) =
1
n

mini∈[d] c(i, hi(x)). (2)

Cormode and Muthukrishnan [4] showed that Pcm(x) approximates P̃ (x) for any
x ∈ [M]K , with at most ε error and at least 1−δ probability, in O((1/ε) log(1/δ))
space. Note that the space is independent of MK . We state this result more
formally below.

Theorem 1. Let P̃ be the distribution in (1) and Pcm be its CM sketch in (2).
Let d = log(1/δ) and m = e/ε. Then for any x ∈ [M]K , P̃ (x) ≤ Pcm(x) ≤ P̃ (x)+
ε with at least 1 − δ probability. The space complexity of Pcm is (e/ε) log(1/δ).

The CM sketch is popular because high-quality approximations, with at most
ε error, can be computed in O(1/ε) space.1 Other similar sketches, such as
Charikar et al. [3], require O(1/ε2) space.
1 https://sites.google.com/site/countminsketch/.

https://sites.google.com/site/countminsketch/

84 B. Kveton et al.

2.2 Bayesian Networks

Graphical models are a popular tool for modeling and reasoning with random
variables [10], and have many applications in computer vision [16] and natural
language processing [11]. In this work, we focus on Bayesian networks [9], which
are directed graphical models.

A Bayesian network is a probabilistic graphical model that represents con-
ditional independencies of random variables by a directed graph. In this work,
we define it as a pair (G, θ), where G is a directed graph and θ are its para-
meters. The graph G = (V,E) is defined by its nodes V = {X1, . . . , XK}, one
for each random variable, and edges E. For simplicity of exposition, we assume
that G is a tree and X1 is its root. We relax this assumption in Sect. 3. Under
this assumption, each node Xk for k ≥ 2 has one parent and the probability of
x = (x1, . . . , xK) factors as:

P (x) = P1(x1)
K∏

k=2

Pk(xk | xpa(k)),

where pa(k) is the index of the parent variable of Xk, and we use shorthands:

Pk(i) = P (Xk = i), Pk(i, j) = P (Xk = i,Xpa(k) = j), Pk(i | j) =
Pk(i, j)
Ppa(k)(j)

.

Let dom (Xk) = M for all k ∈ [K]. Then our graphical model is parameterized
by M prior probabilities P1(i), for any i ∈ [M]; and (K − 1)M2 conditional
probabilities Pk(i | j), for any k ∈ [K] − {1} and i, j ∈ [M].

Let (x(t))n
t=1 be n observations of X. Then the maximum-likelihood estimate

(MLE) of P conditioned on G, θ̄ = arg max θ P ((x(t))n
t=1 | θ,G), has a closed-form

solution:

P̄ (x) = P̄1(x1)
K∏

k=2

P̄k(xk | xpa(k)), (3)

where we abbreviate P (X = x | θ̄,G) as P̄ (x), and define:

∀i ∈ [M] : P̄k(i) =
1
n

n∑

t=1

1
{

x
(t)
k = i

}
,

∀i, j ∈ [M] : P̄k(i, j) =
1
n

n∑

t=1

1
{

x
(t)
k = i, x

(t)
pa(k) = j

}
,

∀i, j ∈ [M] : P̄k(i | j) = P̄k(i, j)/P̄pa(k)(j).

3 Model

Let (x(t))n
t=1 be a stream of n observations from distribution P , where x(t) ∈

[M]K is a K-dimensional vector. Our objective is to approximate P̄ (x) in (3), the

Graphical Model Sketch 85

frequency of observing x as given by the MLE of P from (x(t))n
t=1 conditioned

on graphical model G. This objective naturally generalizes that of the CM sketch
in (1), which is the MLE of P from (x(t))n

t=1 without any assumptions on the
structure of P . For simplicity of exposition, we assume that G is a tree (Sect. 2.2).
Under this assumption, P̄ can be represented exactly in O(KM2) space. This is
not feasible in our problems of interest, where typically M ≥ 104.

The key idea in our solutions is to estimate a surrogate parameter θ̂. We esti-
mate θ̂ on the same graphical model as θ̄. The difference is that θ̂ parameterizes
a graphical model where each factor is represented by O(m) hashing bins, where
m 	 M2. Our proposed models consume O(Km) space, a significant reduction
from O(KM2); and guarantee that P̂ (x) ≈ P̄ (x) for any x ∈ [M]K and obser-
vations (x(t))n

t=1 up to time n, where we abbreviate P (X = x | θ̂,G) as P̂ (x).
More precisely:

P̄ (x)
K∏

k=1

[1 − εk] ≤ P̂ (x) ≤ P̄ (x)
K∏

k=1

[1 + εk] (4)

for any x ∈ [M]K with at least 1−δ probability, where P̂ is factored in the same
way as P̄ . Each term εk is O(1/m), where m is the number of hashing bins.
Therefore, the quality of our approximations improves as m increases. More
precisely, if m is chosen such that εk ≤ 1/K for all k ∈ [K], we get:

[2/(3e)]P̄ (x) ≤ P̂ (x) ≤ eP̄ (x) (5)

for K ≥ 2 since
∏K

k=1(1 + εk) ≤ (1 + 1/K)K ≤ e for K ≥ 1 and
∏K

k=1(1 −
εk) ≥ (1 − 1/K)K ≥ 2/(3e) for K ≥ 2. Therefore, P̂ (x) is a constant-factor
multiplicative approximation to P̄ (x). As in the CM sketch, we do not require
that P̂ (x) sum up to 1.

4 Summary of Main Results

The main contribution of our work is that we propose and analyze three
approaches to the MLE in graphical models with high-cardinality variables. Our
first proposed algorithm, GMHash (Sect. 5.1), approximates P̄ (x) as the product
of K − 1 conditionals and a prior, one for each variable in G. Each conditional is
estimated as a ratio of two hashing bins. GMHash guarantees (5) for any x ∈ [M]K

with at least 1−δ probability in O(K3δ−1Δ−1(x)) space, where Δ(x) is a query-
specific constant and the number of hashing bins is set as m = Ω(K2δ−1). We
discuss Δ(x) at the end of this section. Since δ is typically small, the dependence
on 1/δ is undesirable.

Our second algorithm, GMSketch (Sect. 5.2), approximates P̄ (x) as the
median of d probabilities, each of which is estimated by GMHash. GMSketch
guarantees (5) for any x ∈ [M]K with at least 1 − δ probabil-
ity in O(K3 log(1/δ)Δ−1(x)) space, when we set m = Ω(K2Δ−1(x))

86 B. Kveton et al.

and d = Ω(log(1/δ)). The main advantage over GMHash is that the space is
O(log(1/δ)) instead of O(1/δ).

Our last algorithm, GMFactorSketch (Sect. 5.3), approximates P̄ (x) as the
product of K−1 conditionals and a prior, one for each variable. Each conditional
is estimated as a ratio of two count-min sketches. GMFactorSketch guarantees (5)
for any x ∈ [M]K with at least 1−δ probability in O(K2 log(K/δ)Δ−1(x)) space,
when we set m = Ω(KΔ−1(x)) and d = Ω(log(K/δ)). The key improvement
over GMSketch is that the space is O(K2) instead of being O(K3). In summary,
GMFactorSketch is the best of our proposed solutions. We demonstrate this
empirically in Sect. 7.

The query-specific constant Δ(x) = mink∈[K]−{1} P̄k(xk, xpa(k)) is the min-
imum probability that the values of any variable-parent pair in x co-occur in
(x(t))n

t=1. This probability can be small and our algorithms are unsuitable for
estimating P̄ (x) in such cases. Note that this does not imply that P̄ (x) cannot
be small. Unfortunately, the dependence on Δ(x) is generally unavoidable and
we show this in Sect. 5.4.

The assumption that G is a tree is only for simplicity of exposition. Our
algorithms and their analysis generalize to the setting where Xpa(k) is a vector
of parent variables and xpa(k) are their values. The only change is in how the
pair (xk, xpa(k)) is hashed.

5 Algorithms and Analysis

All of our algorithms hash the values of each variable in graphical model G, and
each variable-parent pair, to m bins up to d times. We denote the i-th hash
function of variable Xk by hi

k and the associated hash table by ck(i, ·). This
hash table approximates nP̄k(·). The i-th hash function of the variable-parent
pair (Xk,Xpa(k)) is also hi

k, and the associated hash table is c̄k(i, ·). This hash
table approximates nP̄k(·, ·). Our algorithms differ in how the hash tables are
aggregated.

We define the notion of a hash, which is a tuple h = (h1, . . . , hK) of K
randomly drawn hash functions hk : N → [m], one for each variable in G. We
make the assumption that hashes are pairwise-independent. We say that hashes
hi and hj are pairwise-independent when hi

k and hj
k are pairwise-independent

for all k ∈ [K]. These kinds of hash functions can be computed fast and stored
in a very small space [4].

5.1 Algorithm GMHash

The pseudocode of our first algorithm, GMHash, is in Algorithm 1. It approximates
P̄ (x) as the product of K − 1 conditionals and a prior, one for each variable Xk.
Each conditional is estimated as a ratio of two hashing bins:

P̂k(xk | xpa(k)) =
c̄k(hk(xk + M(xpa(k) − 1)))

cpa(k)(hpa(k)(xpa(k)))
,

Graphical Model Sketch 87

Algorithm 1. GMHash: Hashed conditionals and priors.
Input: Point query x = (x1, . . . , xK)

P̂1(x1) ← c1(h1(x1))

n
for all k = 2, . . . ,K do

P̂k(xk | xpa(k)) ← c̄k(hk(xk + M(xpa(k) − 1)))

cpa(k)(hpa(k)(xpa(k)))

P̂ (x) ← P̂1(x1)
K∏

k=2

P̂k(xk | xpa(k))

Output: Point answer P̂ (x)

where c̄k(hk(xk + M(xpa(k) − 1))) is the number of times that hash function hk

maps (x(t)
k , x

(t)
pa(k)) to the same bin as (xk, xpa(k)) in n steps, and ck(hk(xk)) is

the number of times that hk maps x
(t)
k to the same bin as xk in n steps. Note

that (xk, xpa(k)) can be represented equivalently as xk +M(xpa(k)−1). The prior
P̄1(x1) is estimated as:

P̂1(x1) =
1
n

c1(h1(x1)).

At time t, the hash tables are updated as follows. Let x(t) be the observation.
Then for all k ∈ [K], y ∈ [m]:

ck(y) ← ck(y) + 1
{

y = hk(x(t)
k)

}
,

c̄k(y) ← c̄k(y) + 1
{

y = hk(x(t)
k + M(x(t)

pa(k) − 1))
}

.

This update takes O(K) time.
GMHash maintains 2K −1 hash tables with m bins each, one for each variable

and one for each variable-parent pair in G. Therefore, it consumes O(Km) space.
Now we show that P̂ is a good approximation of P̄ .

Theorem 2. Let P̂ be the estimator from Algorithm 1. Let h be a random hash
and m be the number of bins in each hash function. Then for any x:

P̄ (x)
K∏

k=1

(1 − εk) ≤ P̂ (x) ≤ P̄ (x)
K∏

k=1

(1 + εk)

holds with at least 1 − δ probability, where:

ε1 = 2K[P̄1(x1)δm]−1, ∀k ∈ [K] − {1} : εk = 2K[P̄k(xk, xpa(k))δm]−1.

Proof. The proof is in Appendix. The key idea is to show that the number of
bins m can be chosen such that:

|P̂k(xk | xpa(k)) − P̄k(xk | xpa(k))| > εk (6)

88 B. Kveton et al.

Algorithm 2. GMSketch: Median of d GMHash estimates.
Input: Point query x = (x1, . . . , xK)

for all i = 1, . . . , d do

P̂ i
1(x1) ← c1(i, h

i
1(x1))

n
for all k = 2, . . . ,K do

P̂ i
k(xk | xpa(k)) ← c̄k(i, hi

k(xk + M(xpa(k) − 1)))

cpa(k)(i, hi
pa(k)(xpa(k)))

P̂ i(x) ← P̂ i
1(x1)

K∏

k=2

P̂ i
k(xk | xpa(k))

P̂ (x) ← median i∈[d] P̂
i(x)

Output: Point answer P̂ (x)

is not likely for any k ∈ [K] − {1} and ε1, . . . , εK > 0. In other words, we argue
that our estimate of each conditional P̄k(xk | xpa(k)) can be arbitrary precise.
By Lemma 1 in Appendix, the necessary conditions for event (6) are:

1
n

cpa(k)(hpa(k)(xpa(k))) − P̄pa(k)(xpa(k)) > εkαk,

1
n

c̄k(hk(xk + M(xpa(k) − 1))) − P̄k(xk, xpa(k)) > εkαk,

where αk = P̄pa(k)(xpa(k)) is the frequency that Xpa(k) = xpa(k) in (x(t))n
t=1.

In short, event (6) can happen only if GMHash significantly overestimates either
P̄pa(k)(xpa(k)) or P̄k(xk, xpa(k)). We bound the probability of these events using
Markov’s inequality (Lemma 2 in Appendix) and then get that none of the events
in (6) happen with at least 1 − δ probability when the number of hashing bins
m ≥ ∑K

k=1(2/(εkαkδ)). Finally, we choose appropriate ε1, . . . , εK .
Theorem 2 shows that P̂ (x) is a multiplicative approximation to P̄ (x). The

approximation improves with the number of bins m because all error terms εk

are O(1/m). The accuracy of the approximation depends on the frequency of
interaction between the values in x. In particular, if P̄k(xk, xpa(k)) is sufficiently
large for all k ∈ [K] − {1}, the approximation is good even for small m. More
precisely, under the assumptions that:

m ≥ 2K2[P̄1(x1)δ]−1, ∀k ∈ [K] − {1} : m ≥ 2K2[P̄k(xk, xpa(k))δ]−1,

all εk ≤ 1/K and the bound in Theorem 2 reduces to (5) for K ≥ 2.

5.2 Algorithm GMSketch

The pseudocode of our second algorithm, GMSketch, is in Algorithm 2. The
algorithm approximates P̄ (x) as the median of d probability estimates:

P̂ (x) = median i∈[d] P̂
i(x).

Graphical Model Sketch 89

Each P̂ i(x) is computed by one instance of GMHash, which is associated with the
hash hi = (hi

1, . . . , h
i
K). At time t, the hash tables are updated as follows. Let

x(t) be the observation. Then for all k ∈ [K], i ∈ [d], y ∈ [m]:

ck(i, y) ← ck(i, y) + 1
{

y = hi
k(x(t)

k)
}

, (7)

c̄k(i, y) ← c̄k(i, y) + 1
{

y = hi
k(x(t)

k + M(x(t)
pa(k) − 1))

}
.

This update takes O(Kd) time. GMSketch maintains d instances of GMHash.
Therefore, it consumes O(Kmd) space. Now we show that P̂ is a good approxi-
mation of P̄ .

Theorem 3. Let P̂ be the estimator from Algorithm 2. Let h1, . . . , hd be d ran-
dom and pairwise-independent hashes, and m be the number of bins in each hash
function. Then for any d ≥ 8 log(1/δ) and x:

P̄ (x)
K∏

k=1

(1 − εk) ≤ P̂ (x) ≤ P̄ (x)
K∏

k=1

(1 + εk)

holds with at least 1 − δ probability, where εk are defined in Theorem 2 for
δ = 1/4.

Proof. The proof is in Appendix. The key idea is the so-called median trick on
d estimates of GMHash in Theorem 2 for δ = 1/4.

Similarly to Sect. 5.1, Theorem 3 shows that P̂ (x) is a multiplicative approxi-
mation to P̄ (x). The approximation improves with the number of bins m and
depends on the frequency of interaction between the values in x.

5.3 Algorithm GMFactorSketch

Our final algorithm, GMFactorSketch, is in Algorithm 3. The algorithm approx-
imates P̄ (x) as the product of K − 1 conditionals and a prior, one for each
variable Xk. Each conditional is estimated as a ratio of two CM sketches:

P̂k(xk | xpa(k)) =
P̂k(xk, xpa(k))

P̂pa(k)(xpa(k))
,

where P̂k(xk, xpa(k)) is the CM sketch of P̄k(xk, xpa(k)) and P̂k(xk) is the CM
sketch of P̄k(xk). The prior P̄1(x1) is approximated by its CM sketch P̂1(x1).

At time t, the hash tables are updated in the same way as in (7). This update
takes O(Kd) time and GMFactorSketch consumes O(Kmd) space. Now we show
that P̂ is a good approximation of P̄ .

90 B. Kveton et al.

Algorithm 3. GMFactorSketch: Count-min sketches of conditionals and priors.
Input: Point query x = (x1, . . . , xK)

// Count-min sketches for variables in G
for all k = 1, . . . ,K do

for all i = 1, . . . , d do

P̂ i
k(xk) ← ck(i, hi

k(xk))

n
P̂k(xk) ← mini∈[d] P̂

i
k(xk)

// Count-min sketches for variable-parent pairs in G
for all k = 2, . . . ,K do

for all i = 1, . . . , d do

P̂ i
k(xk, xpa(k)) ← c̄k(i, hi

k(xk + M(xpa(k) − 1)))

n
P̂k(xk, xpa(k)) ← mini∈[d] P̂

i
k(xk, xpa(k))

for all k = 2, . . . ,K do

P̂k(xk | xpa(k)) ← P̂k(xk, xpa(k))

P̂pa(k)(xpa(k))

P̂ (x) ← P̂1(x1)
K∏

k=2

P̂k(xk | xpa(k))

Output: Point answer P̂ (x)

Theorem 4. Let P̂ be the estimator from Algorithm 3. Let h1, . . . , hd be d ran-
dom and pairwise-independent hashes, and m be the number of bins in each hash
function. Then for any d ≥ log(2K/δ) and x:

P̄ (x)
K∏

k=1

(1 − εk) ≤ P̂ (x) ≤ P̄ (x)
K∏

k=1

(1 + εk)

holds with at least 1 − δ probability, where:

ε1 = e[P̄1(x1)m]−1, ∀k ∈ [K] − {1} : εk = e[P̄k(xk, xpa(k))m]−1.

Proof. The proof is in Appendix. The main idea of the proof is similar to that
of Theorem 2. The key difference is that we prove that event (6) is unlikely for
any k ∈ [K] − {1} by bounding the probabilities of events:

P̂pa(k)(xpa(k)) − P̄pa(k)(xpa(k)) > εkαk,

P̂k(xk, xpa(k)) − P̄k(xk, xpa(k)) > εkαk,

where P̂k(xk, xpa(k)) is the CM sketch of P̄k(xk, xpa(k)) and P̂pa(k)(xpa(k)) is the
CM sketch of P̄pa(k)(xpa(k)).

Graphical Model Sketch 91

As in Sects. 5.1 and 5.2, Theorem 4 shows that P̂ (x) is a multiplicative
approximation to P̄ (x). The approximation improves with the number of bins
m and depends on the frequency of interaction between the values in x.

5.4 Lower Bound

Our bounds depend on query-specific constants P̄k(xk, xpa(k)), which can be
small. We argue that this dependence is intrinsic. In particular, we show that
there exists a family of distributions C such that any data structure that can
summarize any P̄ ∈ C well must consume Ω(Δ−1(C)) space, where:

Δ(C) = minP̄∈C,x∈[M]K ,k∈[K]−{1}:P̄ (x)>0 P̄k(xk, xpa(k)).

Our family of distributions C is defined on two dependent random variables,
where X1 is the parent and X2 is its child. Let m be an integer such that
m = 1/ε for some fixed ε ∈ [0, 1]. Each model in C is defined as follows. The
probability of any m values of X1 is ε. The conditional of X2 is defined as follows.
When P̄1(i) > 0, the probability of any m values of X2 is ε. When P̄1(i) = 0, the
probability of all values of X2 is 1/M . Note that each model induces a different
distribution and that the number of the distributions is

(
M
m

)m+1
, because there

are
(
M
m

)
different priors P̄1 and

(
M
m

)
different conditionals P̄2(· | i), one for each

P̄1(i) > 0. We also note that Δ(C) = ε2. The main result of this section is proved
below.

Theorem 5. Any data structure that can summarize any P̄ ∈ C as P̂ such that
|P̂ (x) − P̄ (x)| < ε2/2 for any x ∈ [M]K must consume Ω(Δ−1(C)) space.

Proof. Suppose that a data structure can summarize any P̄ ∈ C as P̂ such that
|P̂ (x) − P̄ (x)| < ε2/2 for any x ∈ [M]K . Then the data structure must be able
to distinguish between any two P̄ ∈ C, since P̄ (x) ∈ {

0, ε2
}
. At the minimum,

such a data structure must be able to represent the index of any P̄ ∈ C, which
cannot be done in less than:

log2
((

M
m

)m+1
)

≥ log2
(
(M/m)m2+m

)
≥ m2 log2(M/m)

bits because the number of distributions in C is
(
M
m

)m+1
. Now note that m2 =

1/ε2 = Δ−1(C).
It is easy to verify that GMFactorSketch is such a data structure for

m = 5eΔ−1(C) in Theorem 4. In this setting, GMFactorSketch consumes
O(log(1/δ)Δ−1(C)) space. The only major difference from Theorem 5 is that
GMFactorSketch makes a mistake with at most δ probability. Up to this fac-
tor, our analysis is order-optimal and we conclude that the dependence on the
reciprocal of mink∈[K]−{1} P̄k(xk, xpa(k)) cannot be avoided in general.

92 B. Kveton et al.

6 Comparison with the Count-Min Sketch

In general, the error bounds in Theorems 1 and 4 are not comparable, because
P̃ in (1) is a different estimator from P̄ in (3). To compare the bounds, we make
the assumption that (x(t))n

t=1 is a stream of n observations such that P̄ = P̃ .
This holds, for instance, when n → ∞, because both P̄ and P̃ are consistent
estimators of P . In the rest of this section, and without loss of generality, we
assume that P̄ = P̃ = P .

In this section, we construct a class of graphical models where
GMFactorSketch has a tighter error bound than the CM sketch. This class con-
tains naive Bayes models with K + 1 variables:

P (x) = P1(x1)
K+1∏

k=2

Pk(xk | x1). (8)

Variable X1 is binary. For any k ∈ [K + 1] − {1}, variable Xk takes values from
[M]. For simplicity of exposition, we assume that the prior is P1(1) = P1(2) =
0.5. We fix x and define Ck = Pk(xk | x1) for any k ∈ [K + 1] − {1}.

Suppose that GMFactorSketch represents P1 exactly, and therefore P̂1 = P1.
Then by Theorem 4, for any x with at least 1 − δ probability:

P̂ (x) ≤ 1
2

[
K+1∏

k=2

Ck

][
K+1∏

k=2

(
1 +

2e

Ckm

)]
, (9)

where m is the number of hashing bins in GMFactorSketch. Since P̂1 = P1, we
can omit 1+ε1 from Theorem 4. This approximation consumes, up to logarithmic
factors in K, 2Km log(1/δ) space. The CM sketch (Sect. 2.1) guarantees that:

Pcm(x) ≤ 1
2

[
K+1∏

k=2

Ck

]
+

e

m′ =
1
2

[
K+1∏

k=2

Ck

] (
1 +

2e

m′

[
K+1∏

k=2

1
Ck

])
(10)

for any x with at least 1− δ probability, where m′ is the number of hashing bins
in the CM sketch. This approximation consumes m′ log(1/δ) space.

We want to show that the upper bound in (9) is tighter than that in (10)
for any reasonable m. Since GMFactorSketch maintains 2K times more hash
tables than the CM sketch, we increase the number of bins in the CM sketch to
m′ = 2Km, and get the following upper bound:

Pcm(x) ≤ 1
2

[
K+1∏

k=2

Ck

] (
1 +

e

Km

[
K+1∏

k=2

1
Ck

])
. (11)

Now both GMFactorSketch and the CM sketch consume the same space, and
their error bounds are functions of m.

Roughly speaking, the bound in (9) seems to be tighter than that in (11)
because it contains K potentially large values 1/Ck, each of which can be offset

Graphical Model Sketch 93

by a potentially small 1/m. On the other hand, all values 1/Ck in (11) are offset
only by a single 1/m. Now we prove this claim formally. Before we start, note
that both upper bounds in (9) and (11) contain 1

2

[∏K+1
k=2 Ck

]
. Therefore, we

can divide both bounds by this constant and get that the upper bound in (9) is
tighter than that in (11) when:

1 +
e

Km

[
K+1∏

k=2

1
Ck

]
>

K+1∏

k=2

(
1 +

2e

Ckm

)
. (12)

Now we rewrite each (1+2e/(Ckm)) on the right-hand side as (1/Ck)(Ck+2e/m)
and multiply both sides by

∏K+1
k=2 Ck. Then we omit

∏K+1
k=2 Ck from the left-hand

side and get that event (12) happens when:

e

Km
>

K+1∏

k=2

(
Ck +

2e

m

)
. (13)

If Ck is close to one for all k ∈ [K+1]−{1}, the right-hand side of (13) is at least
one and we get that m should be smaller than e/K. This result is impractical
since K is usually much larger than e and we require that m ≥ 1. To make
progress, we restrict our analysis to a class of x. In particular, let Ck ≤ 1/2
for all k ∈ [K + 1] − {1}. Then we can bound the right-hand side of (13) from
above as:

K+1∏

k=2

(
Ck +

2e

m

)
≤

(
1
2

)K (
1 +

4e

m

)K

≤ e

(
1
2

)K

for m ≥ 4eK. This assumption on m is not particularly strong, since Theorem 4
says that we get good multiplicative approximations to P̄ (x) only if m = Ω(K).
Now we apply the above upper bound to inequality (13) and rearrange it as
2K/K > m. Since 2K/K is exponential in K, we get that the bound in (9) is
tighter than that in (11) for a wide range of m and any x where Ck ≤ 1/2 for
all k ∈ [K + 1] − {1}. Our result is summarized below.

Theorem 6. Let P be the distribution in (8) and x be such that Pk(xk | x1) ≤
1/2 for all k ∈ [K + 1] − {1}. Let m ≥ 4eK and m′ = 2Km. Then for any
m < 2K/K, the error bound of GMFactorSketch is tighter than that of the CM
sketch at the same space. More precisely:

P (x)
K+1∏

k=2

(1 + εk) ≤ P (x) +
e

m′ ,

where εk are defined in Theorem 4.

The above result is quite practical. Suppose that K = 32. Then our upper
bound is tighter for any m such that:

4eK < 348 ≤ m ≤ 227 = 232/32 = 2K/K.

94 B. Kveton et al.

By the pidgeonhole principle, Theorem 6 guarantees improvements in at least
2(M − 1)K points x in any distribution in (8). We can bound the fraction of
these points from below as:

2(M − 1)K

2MK
= exp[K log(M − 1) − K log M] ≥ exp

[
− K

M − 1

]
≥ 1 − K

M − 1
.

In our motivating examples, M ≈ 105 and K ≈ 100. In this setting, the error
bound of GMFactorSketch is tighter than that of the CM sketch in at least
99.9% of x, for any naive Bayes model in (8).

7 Experiments

In this section, we compare our algorithms (Sect. 5) and the CM sketch on the
synthetic problem in Sect. 6, and also on a real-world problem in online adver-
tising.

7.1 Synthetic Problem

We experiment with the naive Bayes model in (8), where P1(1) = P1(2) = 0.5;
and:

∀i ∈ [N] : Pk(i | 1) = 1/N, ∀i ∈ [M] − [N] : Pk(i | 1) = 0,
∀i ∈ [N] : Pk(i | 2) = 0, ∀i ∈ [M] − [N] : Pk(i | 2) = 1/(M − N)

for any k ∈ [K + 1] − {1} and N 	 M . The model defines the following dis-
tribution over x = (x1, . . . , xK): when x1 = 1, P (x) = 0.5N−K and we refer to
the example x as heavy ; and when x1 = 2, P (x) = 0.5(M − N)−K and we refer
to the example x as light. The heavy examples are much more probable when
N 	 M . We set M = 216.

All compared algorithms are trained on 1M i.i.d. examples from distribution
P and tested on 500k i.i.d. heavy examples from P . We report the fraction of
imprecise estimates of P as a function of space. The estimate of P (x) is precise
when (1/e)P (x) ≤ P̂ (x) ≤ eP (x). When the sample size n is large, both P̄ → P
and P̃ → P , and this is a fair way of comparing our methods to the CM sketch.
We choose d = 5. We observe similar trends for other values of d. All results are
averaged over 20 runs.

7.2 Easy Synthetic Problem

We choose K = 4 and N = 8, and then P (x) = 2−13 for all heavy x. In this
problem, the CM sketch can approximate P (x) within a multiplicative factor
of e for any heavy x in about 213 space. This space is small, and therefore this
problem is easy for the CM sketch.

Our results are reported in Fig. 1a. We observe that all of our algorithms
outperform the CM sketch. In particular, note that Pcm approximates P well
for any heavy x in about 215 space. Our algorithms achieve the same quality of
the approximation in at most 213 space. GMFactorSketch consumes 210 space,
which is almost two orders of magnitude less than the CM sketch.

Graphical Model Sketch 95

7.3 Hard Synthetic Problem

We set K = 32 and N = 64, and then P (x) = 2−193 for all heavy x. In this
problem, the CM sketch can approximate P (x) within a multiplicative factor of
e for any heavy x in about 2193 space. This space is unrealistically large, and
therefore this problem is hard for the CM sketch.

)b()a(

Fig. 1. a. Evaluation of the CM sketch, GMHash, GMSketch, and GMFactorSketch on
the easy problem in Sect. 7.2 (dashed lines) and the hard problem in Sect. 7.3 (solid
lines). b. Evaluation on the real-world problem in Sect. 7.4.

Our results are reported in Fig. 1a and we observe three major trends. First,
the CM sketch performs poorly. Second, as in Sect. 7.2, our algorithms out-
perform the CM sketch. Finally, when the fraction of imprecise estimates is
small, our algorithms perform as suggested by our theory. GMHash is inferior to
GMSketch, which is further inferior to GMFactorSketch.

7.4 Real-World Problem

We also evaluate our algorithms on a real-world problem where the goal is to
estimate the probability of a page view. We experiment with two months of
data of a medium-sized customer of Adobe Marketing Cloud2. This is 65M page
views, each of which is described by six variables: Country, City, Page Name,
Starting Page Name, Campaign, and Browser. Variable Page Name takes
on more than 42k values and has the highest cardinality. We approximate the
distribution P over our variables by a naive Bayes model, where the class variable
is X1 = Country. Since the behavior of users is often driven by their locations,
this approximation is quite reasonable.

All compared algorithms are trained on 1M i.i.d. examples from distribution
P and tested on all heavy examples in this sample. We say that the example x is
heavy when P (x) > 10−6. The rest of the setup is identical to that in Sect. 7.1.

2 http://www.adobe.com/marketing-cloud.html.

http://www.adobe.com/marketing-cloud.html

96 B. Kveton et al.

Our results are reported in Fig. 1b. We observe the same trends as in Sect. 7.3.
The CM sketch performs poorly, and our methods outperform it at the same
space for any space from 213 to 224. Also note that none of the compared methods
achieve zero mistakes. This is because our sample size n is not large enough to
approximate P well in all heavy x. Even if P̂ = P̄ , our methods would still make
mistakes.

8 Conclusions

Structured high-cardinality data arises in many domains. Probability distrib-
utions over such data cannot be estimated easily with guarantees by either
graphical models [9], a popular approach to reasoning with structured data;
or count sketches [17], a common approach to approximating probabilities in
high-cardinality streams of data. We bring together the ideas of graphical mod-
els and sketches, and propose three approximations to the MLE in graphical
models with high-cardinality variables. We analyze them and prove that our
best approximation, GMFactorSketch, outperforms the CM sketch on a class of
naive Bayes models. We validate these findings empirically.

The MLE is a common approach to estimating the parameters of graphical
models [9]. We propose, analyze, and empirically evaluate multiple space-efficient
approximations to this procedure with high-cardinality variables. In this work,
we focus solely on the problem of estimating P̄ (x), the probability at a single
point x. However, note that our models are constructed from Bayesian networks,
which can answer P (Y = y) for any subset of variables Y with values y. We do
not analyze such inference queries and leave this for future work.

Our work is the first formal investigation of approximations on the inter-
section of graphical models and sketches. One of our key results is that
GMFactorSketch yields a constant-factor multiplicative approximation to P̄ (x)
for any x with probability of at least 1−δ in O(K2 log(K/δ)Δ−1(x)) space, where
K is the number of variables and Δ(x) reflects the hardness of query x. This
result is encouraging because the space is only quadratic in K and logarithmic
in 1/δ. The space also depends on constant Δ(x), which can be small. This con-
stant is intrinsic (Sect. 5.4); and this indicates that the problem of approximating
P̄ (x) well, for any P̄ and x, is intrinsically hard.

References

1. Belle, V., Van den Broeck, G., Passerini, A.: Hashing-based approximate prob-
abilistic inference in hybrid domains. In: Proceedings of the 31st Conference on
Uncertainty in Artificial Intelligence (2015)

2. Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D.: Context-specific indepen-
dence in Bayesian networks. In: Proceedings of the 12th Conference on Uncertainty
in Artificial Intelligence, pp. 115–123 (1996)

3. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams.
Theor. Comput. Sci. 312(1), 3–15 (2004)

Graphical Model Sketch 97

4. Cormode, G., Muthukrishnan, S.: An improved data stream summary: The count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

5. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: Tracking most fre-
quent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)

6. Ermon, S., Gomes, C., Sabharwal, A., Selman, B.: Taming the curse of dimen-
sionality: Discrete integration by hashing and optimization. In: Proceedings of the
30th International Conference on Machine Learning, pp. 334–342 (2013)

7. Flajolet, P., Fusy, E., Gandouet, O., Meunier, F.: Hyperloglog: the analysis of a
near-optimal cardinality estimation algorithm. In: Proceedings of the 2007 Confer-
ence on Analysis of Algorithms, pp. 127–146 (2007)

8. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base appli-
cations. J. Comput. Syst. Sci. 31(2), 182–209 (1985)

9. Jensen, F.: Introduction to Bayesian Networks. Springer, Heidelberg (1996)
10. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-

niques. MIT Press, Cambridge (2009)
11. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic

models for segmenting and labeling sequence data (2001)
12. Liberty, E.: Simple and deterministic matrix sketching. In: Proceedings of the

19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 581–588 (2013)

13. Matusevych, S., Smola, A., Ahmed, A.: Hokusai - Sketching streams in real time.
In: Proceedings of the 28th Conference on Uncertainty in Artificial Intelligence
(2012)

14. McGregor, A., Vu, H.: Evaluating Bayesian networks via data streams. In:
Proceedings of the 21st International Conference on Computing and Combina-
torics, pp. 731–743 (2015)

15. Misra, J., Gries, D.: Finding repeated elements. Sci. Comput. Program. 2(2),
143–152 (1982)

16. Murphy, K., Torralba, A., Freeman, W.: Using the forest to see the trees: a graph-
ical model relating features, objects, and scenes. Adv. Neural Inf. Process. Syst.
16, 1499–1506 (2004)

17. Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trend.
Theor. Comput. Sci. 1(2), 117–236 (2005)

18. Woodruff, D.: Low rank approximation lower bounds in row-update streams. Adv.
Neural Inf. Process. Syst. 27, 1781–1789 (2014)

	Graphical Model Sketch
	1 Introduction
	2 Background
	2.1 Count-Min Sketch
	2.2 Bayesian Networks

	3 Model
	4 Summary of Main Results
	5 Algorithms and Analysis
	5.1 Algorithm GMHash
	5.2 Algorithm GMSketch
	5.3 Algorithm GMFactorSketch
	5.4 Lower Bound

	6 Comparison with the Count-Min Sketch
	7 Experiments
	7.1 Synthetic Problem
	7.2 Easy Synthetic Problem
	7.3 Hard Synthetic Problem
	7.4 Real-World Problem

	8 Conclusions
	References

