Skip to main content

An Evolutionary Framework for Replicating Neurophysiological Data with Spiking Neural Networks

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Abstract

Here we present a framework for the automatic tuning of spiking neural networks (SNNs) that utilizes an evolutionary algorithm featuring indirect encoding to achieve a drastic reduction in the dimensionality of the parameter space, combined with a GPU-accelerated SNN simulator that results in a considerable decrease in the time needed for fitness evaluation, despite the need for both a training and a testing phase. We tuned the parameters governing a learning rule called spike-timing-dependent plasticity (STDP), which was used to alter the synaptic weights of the network. We validated this framework by applying it to a case study in which synthetic neuronal firing rates were matched to electrophysiologically recorded neuronal firing rates in order to evolve network functionality. Our framework was not only able to match their firing rates, but also captured functional and behavioral aspects of the biological neuronal population, in roughly 50 generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, A.S., Nitz, D.A.: Retrosplenial cortex maps the conjunction of internal and external spaces. Nat. Neurosci. 18(8), 1143–1151 (2015)

    Article  Google Scholar 

  2. Asher, D.E., Krichmar, J.L., Oros, N.: Evolution of biologically plausible neural networks performing a visually guided reaching task. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation (GECCO 2014), pp. 145–152. ACM, New York (2014)

    Google Scholar 

  3. Beyeler, M., Carlson, K.D., Chou, T.-S., Dutt, N., Krichmar, J.L.: CARLsim 3: a user-friendly and highly optimized library for thecreation of neurobiologically detailed spiking neural networks. In: 2015 International Joint Conference on Neural Networks (IJCNN 2015), pp. 1–8. IEEE (2015)

    Google Scholar 

  4. Bi, G.-Q., Poo, M.-M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)

    Google Scholar 

  5. Carlson, K.D., Nageswaran, J.M., Dutt, N., Krichmar, J.L.: An efficient automated parameter tuning framework for spiking neuralnetworks. Front. Neurosci. 8 (2014)

    Google Scholar 

  6. Carlson, K.D., Richert, M., Dutt, N., Krichmar, J.L.: Biologically plausible models of homeostasis and STDP: stabilityand learning in spiking neural networks. In: The 2013 International Joint Conference on Neural Networks (IJCNN 2013), pp. 1–8. IEEE (2013)

    Google Scholar 

  7. Carnevale, F., deLafuente, V., Romo, R., Barak, O., Parga, N.: Dynamic control of response criterion in premotor cortex during perceptual detection under temporal uncertainty. Neuron 86(4), 1067–1077 (2015)

    Article  Google Scholar 

  8. Fountas, Z., Shanahan, M.: GPU-based fast parameter optimization for phenomenological spikingneural models. In: 2015 International Joint Conference on Neural Networks (IJCNN 2015), pp. 1–8, July 2015

    Google Scholar 

  9. Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G.S., Linderman, R.W.: Memristor crossbar-based neuromorphic computing system: a case study. IEEE Trans. Neural Networks Learn. Syst. 25(10), 1864–1878 (2014)

    Article  Google Scholar 

  10. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Networks 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  11. Izhikevich, E.M., Desai, N.S.: Relating STDP to BCM. Neural Comput. 15(7), 1511–1523 (2003)

    Article  MATH  Google Scholar 

  12. Krichmar, J.L., Coussy, P., Dutt, N.: Large-scale spiking neural networks using neuromorphic hardwarecompatible models. ACM J. Emerging Technol. Comput. Syst. (JETC), 11(4) (2015). Article no. 36

    Google Scholar 

  13. Mante, V., Sussillo, D., Shenoy, K.V., Newsome, W.T.: Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503(7474), 78–84 (2013)

    Article  Google Scholar 

  14. Prinz, A.A., Billimoria, C.P., Marder, E.: Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J. Neurophysiol. 90(6), 3998–4015 (2003)

    Article  Google Scholar 

  15. Prinz, A.A., Bucher, D., Marder, E.: Similar network activity from disparate circuit parameters. Nat. Neurosci. 7(12), 1345–1352 (2004)

    Article  Google Scholar 

  16. Rossant, C., Goodman, D.F.M., Fontaine, B., Platkiewicz, J., Magnusson, A.K., Brette, R.: Fitting neuron models to spike trains. Front. Neurosci. 5(9) (2011)

    Google Scholar 

  17. Song, H.F., Yang, G.R., Wang, X.J.: Training excitatory-inhibitory recurrent neural networks forcognitive tasks: a simple and flexible framework. PLoS Comput. Biol. 12(2), e1004792 (2016)

    Article  Google Scholar 

  18. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Article  Google Scholar 

  19. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  20. Tripathy, S.J., Savitskaya, J., Burton, S.D., Urban, N.N., Gerkin, R.C.: Neuroelectro: a window to the world’s neuron electrophysiology data. Front. Neuroinf. 8 (2014)

    Google Scholar 

  21. White, D.R.: Software review: the ECJ toolkit. Genet. Program. Evolvable Mach. 13(1), 65–67 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Supported by the National Science Foundation (Award IIS-1302125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily L. Rounds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Rounds, E.L., Scott, E.O., Alexander, A.S., De Jong, K.A., Nitz, D.A., Krichmar, J.L. (2016). An Evolutionary Framework for Replicating Neurophysiological Data with Spiking Neural Networks. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics