Skip to main content

Improved Computation of Involutive Bases

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Abstract

In this paper, we describe improved algorithms to compute Janet and Pommaret bases. To this end, based on the method proposed by Möller et al. [20], we present a more efficient variant of Gerdt’s algorithm (than the algorithm presented in [16]) to compute minimal involutive bases. Furthermore, by using an involutive version of the Hilbert driven technique along with the new variant of Gerdt’s algorithm, we modify the algorithm given in [23] to compute a linear change of coordinates for a given homogeneous ideal so that the new ideal (after performing this change) possesses a finite Pommaret basis. All the proposed algorithms have been implemented in Maple and their efficiency is discussed via a set of benchmark polynomials.

A. Hashemi—The research of the second author was in part supported by a grant from IPM (No. 94550420).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Maple code of the implementations of our algorithms and examples are available at http://amirhashemi.iut.ac.ir/softwares.

  2. 2.

    See http://invo.jinr.ru.

References

  1. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of Gröbner-bases. In: Ng, K.W. (ed.) EUROSAM 1979 and ISSAC 1979. LNCS, vol. 72. Springer, Heidelberg (1979)

    Chapter  Google Scholar 

  2. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. Univ. Innsbruck, Mathematisches Institut (Diss.), Innsbruck (1965)

    Google Scholar 

  3. Buchberger, B.: Bruno Buchberger’s PhD thesis 1965: an algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal. J. Symb. Comput. 41(3–4), 475–511 (2006). Translation from the German

    Article  MathSciNet  MATH  Google Scholar 

  4. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics, 3rd edn. Springer, New York (2007)

    MATH  Google Scholar 

  5. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, New York (2005)

    MATH  Google Scholar 

  6. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases \((F_4)\). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero \((F_5)\). In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC 2002, Lille, France, 07–10 July, pp. 75–83 (2002)

    Google Scholar 

  8. Gao, S., Guan, Y., Volny, F.: A new incremental algorithm for computing Groebner bases. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC 2010, Munich, Germany, 25–28 July, pp. 13–19 (2010)

    Google Scholar 

  9. Gao, S., Volny, F.I., Wang, M.: A new framework for computing Gröbner bases. Math. Comput. 85(297), 449–465 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gebauer, R., Möller, H.: On an installation of Buchberger’s algorithm. J. Symb. Comput. 6(2–3), 275–286 (1988)

    Article  MATH  Google Scholar 

  11. Gerdt, V.P.: On the relation between Pommaret and Janet bases. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing, pp. 167–181. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Gerdt, V.P.: Involutive algorithms for computing Gröbner bases. In: Computational Commutative and Non-commutative Algebraic Geometry, Proceedings of the NATO Advanced Research Workshop, Chisinau, Republic of Moldova, 6–11 June 2004, pp. 199–225. IOS Press, Amsterdam (2005)

    Google Scholar 

  13. Gerdt, V.P., Blinkov, Y.A.: Involutive bases of polynomial ideals. Math. Comput. Simul. 45(5–6), 519–541 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gerdt, V.P., Blinkov, Y.A., Yanovich, D.: Construction of Janet bases I. monomial bases. In: Ganzha, V.G., Mayr, E.M., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing, CASC 2001, pp. 233–247. Springer, Berlin (2001)

    Chapter  Google Scholar 

  15. Gerdt, V.P., Hashemi, A., M.-Alizadeh, B.: A variant of Gerdt’s algorithm for computing involutive bases. Bull. PFUR Ser. Math. Inf. Sci. Phys. 2, 65–76 (2012)

    Google Scholar 

  16. Gerdt, V.P., Hashemi, A., M.-Alizadeh, B.: Involutive bases algorithm incorporating F\(_5\) criterion. J. Symb. Comput. 59, 1–20 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Herzog, J., Hibi, T.: Monomial Ideals. Springer, London (2011)

    Book  MATH  Google Scholar 

  18. Janet, M.: Sur les systèmes d’équations aux dérivées partielles. C. R. Acad. Sci. Paris 170, 1101–1103 (1920)

    MATH  Google Scholar 

  19. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) Computer Algebra, EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)

    Google Scholar 

  20. Möller, H., Mora, T., Traverso, C.: Gröbner bases computation using syzygies. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC 1992, Berkeley, CA, USA, 27–29 July, pp. 320–328 (1992)

    Google Scholar 

  21. Pommaret, J.: Systems of Partial Differential Equations and Lie Pseudogroups, vol. 14. Gordon and Breach Science Publishers, New York (1978). With a preface by Andre Lichnerowicz

    MATH  Google Scholar 

  22. Seiler, W.M.: A combinatorial approach to involution and \(\delta \)-regularity. I: involutive bases in polynomial algebras of solvable type. Appl. Algebra Eng. Commun. Comput. 20(3–4), 207–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Seiler, W.M.: A combinatorial approach to involution and \(\delta \)-regularity. II: structure analysis of polynomial modules with Pommaret bases. Appl. Algebra Eng. Commun. Comput. 20(3–4), 261–338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Seiler, W.M.: Involution. The Formal Theory of Differential Equations and Its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer, Berlin (2010)

    MATH  Google Scholar 

  25. Thomas, J.M.: Differential Systems, IX. 118 p. American Mathematical Society (AMS), New York (1937)

    Google Scholar 

  26. Traverso, C.: Hilbert functions and the Buchberger algorithm. J. Symb. Comput. 22(4), 355–376 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zharkov, A., Blinkov, Y.: Involution approach to investigating polynomial systems. Math. Comput. Simul. 42(4), 323–332 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hashemi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Binaei, B., Hashemi, A., Seiler, W.M. (2016). Improved Computation of Involutive Bases. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics