Skip to main content

LED Die Bonding

  • Chapter
  • First Online:
Materials for Advanced Packaging
  • 10k Accesses

Abstract

This chapter addresses the materials for the first step of light-emitting diode (LED) packaging, i.e., LED die attach adhesives (DAAs) and other chip bonding materials. The most significant difference between conventional integrated-circuit (IC) chip DAAs and LED DAAs is that the optical role of LED DAAs becomes the most important factor in additional to the other functions of conventional DAAs, i.e., adhesion and reliability. Thus, the chapter addresses in details of the optical role and optical requirement of LED DAAs and other LED chip bonding materials, in additional to the other conventional aspects of DAAs.

The first section of this chapter will review the function of LED packaging, LED packages, and materials. In the second part, recent development on LED die bonding materials will be introduced. Optical adhesives of different thermal conductivities, adhesive films, eutectic solder pastes, low-temperature sintering silver pastes will be presented in this section. The third part of this chapter provides an overview of most recent advanced LED packaging technologies, including surface-mount device (SMD), chip on board (COB), flip-chip (FC), chip scale package (CSP), and wafer-level CSP packaging (WLCSP), and the interaction between packages and DAAs. Important packaging parameters and their influence on optical and thermal performance of LEDs are elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fred Schubert E (2006) Light-emitting diodes, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Hsu YP et al (2004) Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs. J Cryst Growth 261:466–470

    Article  Google Scholar 

  3. Kim H, Park S-J, Hwang H (2002) Lateral current transport path, a model for GaN-based light-emitting diodes: applications to practical device designs. Appl Phys Lett 81(7):1326–1328

    Article  Google Scholar 

  4. Malyutenko VK, Bolgov SS, Podoltsev AD (2010) Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes. Appl Phys Lett 97:251110

    Article  Google Scholar 

  5. Schubert MF et al (2008) Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop. Appl Phys Lett 93:041102

    Article  Google Scholar 

  6. Cao XA, Arthur SD (2004) High-power and reliable operation of vertical light-emitting diodes on bulk GaN. Appl Phys Lett 85(18):3971–3973

    Article  Google Scholar 

  7. Ha J-S et al (2008) The Fabrication of vertical light-emitting diodes using chemical lift-off process. IEEE Photon Technol Lett 20(3):175–177

    Article  Google Scholar 

  8. Wang S-J et al (2005) Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes. Appl Phys Lett 87:011111

    Article  Google Scholar 

  9. Steigerwald DA, Lester SD, Wierer Jr JJ (2013) Highly reflective ohmic contacts to III-nitride flip-chip LEDs. US Patent 6,573,537, 3 June 2013

    Google Scholar 

  10. Wojnarowski RJ, William PM, Benicewicz PK (2002) Flip chip led apparatus. US Patent No 6,483,196, 19 Nov 2002

    Google Scholar 

  11. Shei S-C, Sheu J-K (2005) LED device, flip-chip LED package and light reflecting structure. US Patent 6,914,268, 5 July 2005

    Google Scholar 

  12. Lin M-D, Lin S-B (2005) Package array and package unit of flip chip LED. US Patent 2005/0199899, 15 Sept 2005

    Google Scholar 

  13. Steigerwald DA et al (2002) Illumination with solid state lighting technology. IEEE J Sel Top Quantum Electron 8(2):310–320

    Article  Google Scholar 

  14. Cheng SJ et al (2005) Nitride-based flip-chip ITO LEDs. IEEE Trans Adv Packag 28(2):273–277

    Article  Google Scholar 

  15. Wierer JJ et al (2001) High-power AlGaInN flip-chip light-emitting diodes. Appl Phys Lett 78(22):3379–3381

    Article  Google Scholar 

  16. Kim M-H et al (2007) Origin of efficiency droop in GaN-based light-emitting diodes. Appl Phys Lett 91:183507

    Article  Google Scholar 

  17. 3-pad LED flip chip COB. www.led-professional.com

  18. Kumar RN et al (2006) Ultraviolet radiation curable epoxy resin encapsulant for light emitting diodes. J Appl Polym Sci 100(2):1048–1056

    Article  Google Scholar 

  19. Lin Y-H, You J-P, Lin Y-C, Tran NT, Shi FG (2010) Development of high-performance optical silicone for the packaging of high-power LEDs. IEEE Trans Compon Packag Technol 33(4):761–766

    Article  Google Scholar 

  20. Norris AW et al (2005) Novel silicone materials for LED packaging. Proc SPIE 5941:594115

    Article  Google Scholar 

  21. Tran NT, You J-P, Shi FG (2009) Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED. J Lightwave Technol 27(22):5145–5150

    Article  Google Scholar 

  22. Hartmann P, Pachler P, Payrer EL, Tasch S (2009) Up and down: color conversion for solid-state lighting. In: Proceedings of the SPIE light-emitting diodes: materials, devices, and applications for solid state lighting XIII, vol 7231, pp 72310X-1–72310X-7

    Google Scholar 

  23. Yan B, Tran NT, You JP, Shi FG (2011) Can junction temperature alone characterize thermal performance of white LED emitters? IEEE Photon Technol Lett 23(9):555–557

    Article  Google Scholar 

  24. Shih Y-C, Kim G, Huang L, You J-P, Shi FG (2015) Role of transparent die attach adhesives for enhancing lumen output of midpower LED emitters with standard MESA structure. IEEE Trans Compon Packag Technol 5(6):731–736

    Article  Google Scholar 

  25. Chhajed S, Xi Y, Li YL, Gessmann T, Schubert EF (2005) Influence of Junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes. J Appl Phys 97:054506

    Article  Google Scholar 

  26. Feezell DF, Speck JS, Denbaars SP, Nakamura S (2013) Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting. J Disp Technol 9(4):190–198

    Article  Google Scholar 

  27. Gardner NF et al (2007) Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2. Appl Phys Lett 91(24):243506

    Article  Google Scholar 

  28. Manikam VR, Cheong KY (2011) Die attach materials for high temperature applications: a review. IEEE Trans Compon Packag Technol 1(4):457–478

    Article  Google Scholar 

  29. Kim HH, Choi SH, Shin SH, Lee YK, Choi SM, Yi S (2008) Thermal transient characteristics of die attach in high power LED PKG. Microelectron Reliab 48(3):445–454

    Article  Google Scholar 

  30. Yan B, You JP, Tran NT, He Y, Shi FG (2010) Influence of die attach layer on thermal performance of high power light emitting diodes. IEEE Trans Compon Packag Technol 33(4):722–727

    Article  Google Scholar 

  31. Miyoshi K, Goto T, Yamakawa N (2006) Silicone resin composition for die bonding. U.S. Patent 20060275617 A1

    Google Scholar 

  32. Abtew M et al (2000) Lead-free solders in microelectronics. Mater Sci Eng R 27:95–141

    Article  Google Scholar 

  33. Narumanchi S, Mihalic M, Kelly K (2008) Thermal interface materials for power electronics applications. In: Proceedings of the 11th intersociety conference on thermal and thermomechanical phenomena in electronic systems, ITHERM 2008, pp 395–404

    Google Scholar 

  34. Zhou W et al (2007) Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. J Appl Polym Sci 104:1312–1318

    Article  Google Scholar 

  35. Dutt G, Bhatkal R (2015) LED die attach selection considerations. Alpha LED Die Attach White Paper

    Google Scholar 

  36. You JP, He Y, Shi FG (2007) Thermal management of high power LEDs: impact of die attach materials. In: Proceedings of the IMPACT-international microsystem packaging assembly circuit technology conference, Taipei, October 2007, pp 239–242

    Google Scholar 

  37. Davies P et al (2009) Influence of adhesive bond line thickness on joint strength. Int J Adhes Adhes 29:724–736

    Article  Google Scholar 

  38. Liu Y et al (2014) Thermal and mechanical effects of voids within flip chip soldering in LED packages. Microelectron Reliab 54:2028–2033

    Article  Google Scholar 

  39. Kuramoto M, Ogawa S, Niwa M, Kim K-S, Suganuma K (2010) Die bonding for a nitride light-emitting diode by low-temperature sintering of micrometer size silver particles. IEEE Trans Compon Packag Technol 33(4):801–808

    Article  Google Scholar 

  40. Rasiah IJ, Breach C (2000) The effect of fillet height and bondline thickness on the mechanical performance of a plastic package. In: International symposium on electronic materials and packaging, Hong Kong, pp 416–420

    Google Scholar 

  41. Kim G, Shi FG (in press) Mid-power white LED manufacturing: lumen binning dependence on packaging

    Google Scholar 

  42. Hsiao SL, Hu NC, Cornelissen H (2013) Phosphor-converted LED modeling using near-field chromatic luminance data. Opt Express 21(102):A250–A261

    Article  Google Scholar 

  43. Narendran N, Gu Y, Freyssinier-Nova JP, Zhu Y (2005) Extracting phosphor-scattered photons to improve white LED efficiency. Phys Stat Solidi A 202(6):R60–R62

    Article  Google Scholar 

  44. Yamakawa N, Miyoshi K, Ozai T, Ogawa Y (2013) Silicone adhesive for semiconductor element. U.S. Patent 20130146939 A1

    Google Scholar 

  45. Shao Y, Shih Y-C, Kim G, Shi FG (2015) Study of optimal filler size for high performance polymer-filler composite optical reflectors. Opt Mater Express 5(2):423–429

    Article  Google Scholar 

  46. Shih Y-C (2015) Materials and process optimization for performance enhancement and cost reduction for the packaging of LED emitters and solar cells. Ph.D. dissertation

    Google Scholar 

  47. Frear DR, Jang JW, Lin JK, Zhang C (2001) Pb-free solders for flip-chip interconnects. JOM 53(6):28–33

    Article  Google Scholar 

  48. Zhang F, Li M, Balakrisnan B, Chen WT (2002) Failure mechanism of lead-free solder joints in flip chip packages. J Electron Mater 31(11):1256–1263

    Article  Google Scholar 

  49. LEDinside (2015) Lattice power CTO: low and mid-power LED chip becomes major trend in the industry

    Google Scholar 

  50. Wang C-P, Ying S-P, Yi-Ching S, Chang T-L (2015) Thermal analysis of eutectic flip-chip light-emitting diodes fabricated using copper-coated ceramic substrate. IEEE Trans Electron Dev 62(8):2524–2527

    Article  Google Scholar 

  51. Gee JM, Bogart KHA, Fischer AJ (2005) Flip-chip light emitting diode with resonant optical microcavity. US Patent 6,969,874, 29 Nov 2005

    Google Scholar 

  52. Lu G-Q, Calata JN, Lei G, Chen X (2007) Low-temperature and pressureless sintering technology for high-performance and high-temperature interconnection of semiconductor devices. In: Proceedings of the 8th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems, London, April 2007, pp 1–5

    Google Scholar 

  53. Wu Y, Zhao Y, Wang Y, Jones S, Dai X, Liu G (2014) Applications of low temperature sintering technology as die attach for high temperature power modules. In: Proceedings of the 15th international conference electronic packaging technology, Chengdu, August 2014, pp 452–457

    Google Scholar 

  54. Tan KS, Wong YH, Cheong KY (2015) Thermal characteristic of sintered Ag-Cu nanopaste for high-temperature die-attach application. Int J Therm Sci 87:169–177

    Article  Google Scholar 

  55. Kim G, Shih Y-C, You J-P, Shi FG (2015) Optical role of die attach adhesive for white LED emitters: light output enhancement without chip-level reflectors. J Solid State Light 2:11

    Article  Google Scholar 

  56. Lin N-M, Shei S-C, Chang S-J (2011) Nitride-based LEDs with high-reflectance and wide-angle Ag mirror + SiO2/TiO2 DBR backside reflector. J Lightwave Technol 29(7):1033–1038

    Article  Google Scholar 

  57. Kim G, Shih Y-C, You J-P, Shi FG (in press) Optical role of die bonding for chip-on-board white light emitting diode emitters

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank for the partial financial support provided by Dow Corning and Optobond, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chou Shih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shih, YC., Kim, G., You, JP., Shi, F.G. (2017). LED Die Bonding. In: Lu, D., Wong, C. (eds) Materials for Advanced Packaging. Springer, Cham. https://doi.org/10.1007/978-3-319-45098-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45098-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45097-1

  • Online ISBN: 978-3-319-45098-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics