Skip to main content

Landau-Lifshitz-Bloch Approach for Magnetization Dynamics Close to Phase Transition

  • Living reference work entry
  • First Online:

Abstract

Micromagnetic modeling has recommended itself as a useful tool for the design of magnetic nanostructures in multiple applications. The standard micromagnetics based on the integration of the Landau-Lifshitz-Gilbert equation is a valid approach at low temperatures only. In multiple recent applications such as heat-assisted magnetic recording or ultrafast magnetic dynamics, the temperatures often go close to the Curie temperature Tc and above. Here we review the micromagnetic approach valid in this temperature range, based on the use of the Landau-Lifshitz-Bloch equation. The essential part of this approach is the presence of the temperature-dependent longitudinal relaxation with the characteristic time diverging at Tc. We review this approach in its classical and quantum formulations and for one- and two-component materials. The behavior of longitudinal relaxation time is discussed. Finally, we present examples of the use of this micromagnetics related to the modeling of ultrafast magnetization dynamics.

This is a preview of subscription content, log in via an institution.

References

  • Asselin P, Evans RFL, Barker J, Chantrell RW, Yanes R, Chubykalo-Fesenko O, Hinzke D, Nowak U (2010) Constrained monte carlo method and calculation of the temperature dependence of magnetic anisotropy. Phys Rev B 82:054415

    Article  ADS  Google Scholar 

  • Atxitia U (2012) Modeling of ultrafast laser-induced magnetization dynamics within the Landau-Lifshitz-Bloch approach. PhD thesis, Instituto de Ciencia de Materiales de Madrid (ICMM) – Universidad Autónoma de Madrid

    Google Scholar 

  • Atxitia U, Chubykalo-Fesenko O (2011) Ultrafast magnetization dynamics rates within the Landau-Lifshitz-Bloch model. Phys Rev B 84:144414

    Article  ADS  Google Scholar 

  • Atxitia U, Chubykalo-Fesenko O, Kazantseva N, Hinzke D, Nowak U, Chantrell RW (2007) LLB-micromagnetic modelling of laser-induced magnetisation dynamics. Appl Phys Lett 91:232507

    Article  ADS  Google Scholar 

  • Atxitia U, Chubykalo-Fesenko O, Walowski J, Mann A, Münzenberg M (2010a) Evidence for thermal mechanisms in laser-induced femtosecond spin dynamics. Phys Rev B 81:174401

    Article  ADS  Google Scholar 

  • Atxitia U, Hinzke D, Chubykalo-Fesenko O, Nowak U, Kachkachi H, Mryasov ON, Evans RF, Chantrell RW (2010b) Multiscale modeling of magnetic materials: temperature dependence of the exchange stiffness. Phys Rev B 82:134440

    Article  ADS  Google Scholar 

  • Atxitia U, Nieves P, Chubykalo-Fesenko O (2012) Landau-Lifshitz-Bloch equation for ferrimagnetic materials. Phys Rev B 86:104414

    Article  ADS  Google Scholar 

  • Atxitia U, Barker J, Chantrell RW, Chubykalo-Fesenko O (2014) Controlling the polarity of the transient ferromagneticlike state in ferrimagnets. Phys Rev B 89:224421

    Article  ADS  Google Scholar 

  • Atxitia U, Hinzke D, Nowak U (2016) Fundamentals and applications of the Landau-Lifshitz-Bloch equation. J Phys D Appl Phys 50:033003

    Article  ADS  Google Scholar 

  • Battiato M, Barbalinardo G, Oppeneer PM (2014) Phys Rev B 89:014413

    Article  ADS  Google Scholar 

  • Beaurepaire E, Merle JC, Daunois A, Bigot JY (1996) Ultrafast spins dynamics in ferromagnetic nickel. Phys Rev Lett 76:4250

    Article  ADS  Google Scholar 

  • Bloch F (1946) Nuclear induction. Phys Rev 70:460

    Article  ADS  Google Scholar 

  • Blum K (1981) Density matrix theory and applications. Plenum Press, New York

    Book  Google Scholar 

  • Brown WF (1963a) Micromagnetics. Wiley, New York

    MATH  Google Scholar 

  • Brown WF (1963b) Thermal fluctuations of a single-domain particle. Phys Rev 130:1677

    Article  ADS  Google Scholar 

  • Chantrell RW, Wongsam M, Schrefl T, Fidler J (2001) Micromagnetics I: basic principles. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S (eds) Encyclopedia of materials: science and technology. Elsevier, Amsterdam

    Google Scholar 

  • Chubykalo O, Hannay JD, Wongsam MA, Chantrell RW, González JM (2002) Langevin dynamic simulation of spin waves in a micromagnetic model. Phys Rev B 65:184428

    Article  ADS  Google Scholar 

  • Chubykalo O, Smirnov-Rueda R, Wongsam MA, Chantrell RW, Nowak U, González JM (2003) Brownian dynamics approach to interacting magnetic moments. J Magn Magn Mat 266:28

    Article  ADS  Google Scholar 

  • Chubykalo-Fesenko O, Nowak U, Chantrell RW, Garanin D (2006) Dynamic approach for micromagnetics close to the curie temperature. Phys Rev B 74:094436

    Article  ADS  Google Scholar 

  • Coey J (2009) Magnetism and magnetic materials. Cambridge University Press, New York

    Google Scholar 

  • Eriksson O, Bergman A, Bergqvist L, Hellsvik J (2017) Atomistic spin dynamics foundations and applications. Oxford University Press, New York

    Book  Google Scholar 

  • Evans RFL, Hinzke D, Atxitia U, Nowak U, Chantrell RW, Chubykalo-Fesenko O (2012) Stochastic form of the Landau-Lifshitz-Bloch equation. Phys Rev B 85:014433

    Article  ADS  Google Scholar 

  • Evans RFL, Fan WJ, Chureemart P, Ostler TA, Ellis MOA, Chantrell RW (2014) Atomistic spin model simulations of magnetic nanomaterials. J Phys Cond Mat 26:103202

    Article  ADS  Google Scholar 

  • Fidler J, Schrefl T (2000) Micromagnetic modelling—the current state of the art. J Phys D Appl Phys 33:R135

    Article  ADS  Google Scholar 

  • Garanin DA (1991) Generalized equation of motion for a ferromagnet. Phys A 172:470

    Article  Google Scholar 

  • Garanin DA (1997) Fokker-Planck and Landau-Lifshitz-Bloch equation for classical ferromagnets. Phys Rev B 55:3050

    Article  ADS  Google Scholar 

  • Garanin DA (2012) Density matrix equation for a bathed small system and its application to molecular magnets. Adv Chem Phys 147:213

    Google Scholar 

  • Garanin DA, Chubykalo-Fesenko O (2004) Thermal fluctuations and longitudinal relaxation of single-domain magnetic particles at elevated temperatures. Phys Rev B 70:212409

    Article  ADS  Google Scholar 

  • Garanin DA, Ishtchenko VV, Panina LV (1990) Theor Math Phys 82:169

    Article  Google Scholar 

  • García-Palacios JL, Lázaro FJ (1998) Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys Rev B 58:14937

    Article  ADS  Google Scholar 

  • Gilbert T (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40:6

    Article  Google Scholar 

  • Greaves SJ, Muraoka H, Kanai Y (2015) Modelling of heat assisted magnetic recording with the landau-lifshitz-bloch equation and brillouin functions. J Appl Phys 117:17C505

    Article  Google Scholar 

  • Grinstein G, Koch RH (2003) Coarse graining in micromagnetics. Phys Rev Lett 90:207201

    Article  ADS  Google Scholar 

  • Hertel R (2005) Theory of the inverse faraday effect in metals. J Magn Magn Mater 202:L1–L4

    ADS  Google Scholar 

  • Hinzke D, Nowak U (2011) Domain wall motion by the magnonic spin seebeck effect. Phys Rev Lett 107:027205

    Article  ADS  Google Scholar 

  • Hinzke D, Nowak U, Garanin DA (2000) Uniform susceptibility of classical antiferromagnets in one and two dimensions in a magnetic field. Euro Phys J B 16:435

    Article  ADS  Google Scholar 

  • Hinzke D, Nowak U, Mryasov ON, Chantrell RW (2007) Orientation and temperature dependence of domain wall properties in FePt. Appl Phys Lett 90:082507

    Article  ADS  Google Scholar 

  • Hinzke D, Atxitia U, Carva K, Nieves P, Fesenko-Chubykalo O, Oppeneer P, Nowak U (2015) Multiscale modeling of ultrafast element specific magnetization dynamics of ferromagnetic alloys. Phys Rev B 92:054412

    Article  ADS  Google Scholar 

  • Janda T, Roy P, Otxoa R, Soban Z, Ramsay A, Irvine A, Trojanek F, Surynek M, Campion R, Gallagher B, Jungwirth T, Nemec P, Wunderlich J (2017) Inertial displacement of a domain wall excited by ultra-short circularly polarized laser pulses. Nat Commun 8:15226

    Article  ADS  Google Scholar 

  • John R, Berrita M, Hinzke D, Muller C, Santos T, Ulrichs H, Nieves P, Mondal R, Walowski J, Chubykalo-Fesenko O, McCord J, Oppenneer P, Nowak U, Muzenberg M (2017) Magnetization switching of FePt nanoparticle recording medium by femtosecond laser pulses. Sci Rep 7:4114

    Article  ADS  Google Scholar 

  • Kachkachi H, Garanin D (2001) Magnetic free energy at elevated temperatures and hysteresis of magnetic particles. Phys A 291:485–500

    Article  Google Scholar 

  • Kazantseva N (2008) Dynamic response of the magnetisation to picosecond heat pulses. PhD thesis, University of York

    Google Scholar 

  • Kazantseva N, Hinzke D, Nowak U, Chantrell RW, Chubykalo-Fesenko O (2007) Atomistic models of ultrafast reversal. Phys Stat Sol 244:4389

    Article  ADS  Google Scholar 

  • Kazantseva N, Hinzke D, Nowak U, Chantrell RW, Atxitia U, Chubykalo-Fesenko O (2008a) Towards multiscale modelling of magnetic materials: simulations of FePt. Phys Rev B 77:184428

    Article  ADS  Google Scholar 

  • Kazantseva N, Nowak U, Chantrell RW, Hohlfeld J, Rebei A (2008b) Slow recovery of the magnetisation after a sub-picosecond heat-pulse. Europhys Lett 81:27004

    Article  ADS  Google Scholar 

  • Kazantseva N, Hinzke D, Chantrell R, Nowak U (2009) Linear and elliptical magnetization reversal close to the curie temperature. Europhys Lett 86:27006

    Article  ADS  Google Scholar 

  • Kimel AV, Kirilyuk A, Rasing T (2007) Femptosecond opto-magnetism: ultrafast laser manipulation. Laser Photonics Rev 1:275–287

    Article  ADS  Google Scholar 

  • Kirilyuk A, Kimel AV, Rasing T (2010) Ultrafast optical manipulation of magnetic order. Rev Mod Phys 82:2731

    Article  ADS  Google Scholar 

  • Koopmans B, Ruigrok JJM, Longa FD, de Jonge WJM (2005) Unifying ultrafast magnetization dynamics. Phys Rev Lett 95:267207

    Article  ADS  Google Scholar 

  • Koopmans B, Malinowski G, Longa FD, Steiauf D, Fähnle M, Roth T, Cinchetti M, Aeschlimann M (2010) Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat Mat 9:259–265

    Article  Google Scholar 

  • Lambert CH, Mangin S, Varaprasad BSDCS, Takahashi YK, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M, Fullerton EE (2014) All-optical control of ferromagnetic thin films and nanostructures. Science 345:1337

    Article  ADS  Google Scholar 

  • Landau DL, Lifshitz E (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjetunion 8:153

    MATH  Google Scholar 

  • Lyberatos A, Chantrell RW (1993) Thermal fluctuations in a pair of magnetostatistically coupled particles. J Appl Phys 73:6501

    Article  ADS  Google Scholar 

  • McDaniel TW (2012) Application of Landau-Lifshitz-Bloch dynamics to grain switching in heat-assisted magnetic recording. J Appl Phys 112:013914

    Article  ADS  Google Scholar 

  • Mendil J, Nieves P, Chubykalo-Fesenko O, Walowski J, Santos T, Pisana S, Münzenberg M (2014) Resolving the role of femtosecond heated electrons in ultrafast spin dynamics. Sci Rep 4:3980

    Article  ADS  Google Scholar 

  • Moreno R, Evans R, Khmelevskyi S, Munoz M, Chantrell R, Chubykalo-Fesenko O (2016) Temperature-dependent exchange stiffness and domain wall width in co. Phys Rev B 94:104433

    Article  ADS  Google Scholar 

  • Nakatani Y, Uesaka Y, Hayashi N, Fukushima H (1997) Computer simulation of thermal fluctuation of fine particle magnetization based on Langevin equation. J Magn Magn Mat 168:347

    Article  ADS  Google Scholar 

  • Nieves P (2015) Micromagnetic models for high-temperature magnetization dynamics. PhD thesis, Instituto de Ciencia de Materiales de Madrid (ICMM) – Universidad Autónoma de Madrid

    Google Scholar 

  • Nieves P, Chubykalo-Fesenko O (2016) Modeling of ultrafast heat- and field-assisted magnetization dynamics in FePt. Phys Rev Appl 5:014006

    Article  ADS  Google Scholar 

  • Nieves P, Serantes D, Atxitia U, Chubykalo-Fesenko O (2014) The quantum Landau-Lifshitz-Bloch equation and its comparison with the classical case. Phys Rev B 90:104428

    Article  ADS  Google Scholar 

  • Nieves P, Atxitia U, Chantrell RW, Chubykalo-Fesenko O (2015) The classical two sublattice Landau-Lifshitz-Bloch equation at all temperatures. Low Temp Phys 41:949

    Article  Google Scholar 

  • Nieves P, Serantes D, Chubykalo-Fesenko O (2016) Self-consistent description of spin-phonon dynamics in ferromagnets. Phys Rev B 94:014409

    Article  ADS  Google Scholar 

  • Nieves P, Arapan S, Schrefl T, Cuesta-Lopez S (2017) Atomistic spin dynamics simulations of the MnAl τ-phase and its antiphase boundary. Phys Rev B 96:224411

    Article  ADS  Google Scholar 

  • Ostler TA, Evans RFL, Chantrell RW, Atxitia U, Chubykalo-Fesenko O, Radu I, Abrudan R, Radu F, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T, Kimel A (2011) Crystallographically amorphous ferrimagnetic alloys: comparing a localized atomistic spin model with experiments. Phys Rev B 84:024407

    Article  ADS  Google Scholar 

  • Ostler T, Barker J, Evans R, Chantrell R, Atxitia U, Chubykalo-Fesenko O, Moussaoui SE, Guyader LL, Mengotti E, Heyderman L, Nolting F, Tsukamoto A, Itoh A, Afanasiev D, Ivanov B, Kalashnikova A, Vahaplar K, Mentink J, Kirilyuk A, Rasing T, Kimel A (2012) Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat Commun 3:666

    Article  Google Scholar 

  • Schieback C, Hinzke D, Kläui M, Nowak U, Nielaba P (2009) Temperature dependence of the current-induced domain wall motion from a modified Landau-Lifshitz-Bloch equation. Phys Rev B 80:214403

    Article  ADS  Google Scholar 

  • Schlickeiser F, Atxitia U, Wienholdt S, Hinzke D, Chubykalo-Fesenko O, Nowak U (2012) Temperature dependence of the frequencies and effective damping parameters of ferrimagnetic resonance. Phys Rev B 86:214416

    Article  ADS  Google Scholar 

  • Schlickeiser F, Ritzmann U, Hinzke D, Nowak U (2014) Role of entropy in domain wall motion in thermal gradients. Phys Rev Lett 113:097201

    Article  ADS  Google Scholar 

  • Scholz W, Schrefl T, Fidler J (2001) Micromagnetic simulation of thermally activated switching in fine particles. J Magn Magn Mat 233:296

    Article  ADS  Google Scholar 

  • Skubic B, Hellsvik J, Nordström L, Eriksson O (2008) A method for atomistic spin dynamics simulations: implementation and examples. J Phys Condens Matter 20:315203

    Article  Google Scholar 

  • Suarez O, Nieves P, Laroze D, Altbir D, Chubykalo-Fesenko O (2015) The ultra-fast relaxation rates and reversal time in disordered ferrimagnets. Phys Rev B 92:144425

    Article  ADS  Google Scholar 

  • Sultan M, Atxitia U, Melnikov A, Chubykalo-Fesenko O, Bovensiepen U (2012) Electron- and phonon-mediated ultrafast magnetization dynamics of Gd(0001). Phys Rev B 85:184407

    Article  ADS  Google Scholar 

  • Takano K, Jin E, Zhou D, Maletzky T, Smyth J, Dovek M (2011) Thermo-dynamic magnetisation model of thermally assisted magnetic recording by Landau-Lifshitz-Bloch equation. J Magn Soc Jpn 35:431

    Article  Google Scholar 

  • Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E (2008) Observation of the spin Seebeck effect. Nature 455:778

    Article  ADS  Google Scholar 

  • Vahaplar K, Kalashnikova AM, Kimel A, Hinzke D, Nowak U, Chantrell R, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T (2009) Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state. Phys Rev Lett 103:117201

    Article  ADS  Google Scholar 

  • Vahaplar K, Kalashnikova AM, Kimel A, Gerlach S, Hinzke D, Nowak U, Chantrell R, Tsukamoto A, Itoh A, Kirilyuk A, Rasing T (2012) All-optical magnetization reversal by circularly polarized laser pulses: Experiment and multiscale modeling. Phys Rev B 85:104402

    Article  ADS  Google Scholar 

  • Vogler C, Abert C, Bruckner F, Suess D (2014) Landeu-Lifshits-Bloch equation for exchange-coupled grains. Phys Rev B 90:214431

    Article  ADS  Google Scholar 

  • Vogler C, Abert C, Bruckner F, Suess D, Praetorius D (2016) Areal density optimizations for heat-assisted magnetic recording of high-density media. J Appl Phys 120:223903

    Article  ADS  Google Scholar 

  • Vogler C, Abert C, Bruckner F, Suess D (2018) Stochastic ferrimagnetic Landau-Lifshitz-Bloch equation for finite magnetic structures. arXiv:180401724

    Google Scholar 

  • Xu L, Zhang S (2012) Magnetization dynamics at elevated temperatures. Phys E 45:72

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Economy and Competitiveness under the project FIS201678591-C3-3-R. P.N. acknowledges support from EU Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement No. 686056, NOVAMAG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Chubykalo-Fesenko .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chubykalo-Fesenko, O., Nieves, P. (2018). Landau-Lifshitz-Bloch Approach for Magnetization Dynamics Close to Phase Transition. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_72-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_72-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics