Skip to main content

Continuum Dislocation Dynamics: Classical Theory and Contemporary Models

  • Living reference work entry
  • First Online:
Handbook of Materials Modeling

Abstract

The continuum theory of dislocation fields is discussed in this chapter with an emphasis on the formulations relevant to infinitesimal deformation of single crystals. Both the classical and contemporary developments are concisely outlined. The classical theory of dislocation fields is introduced first for static and dynamic dislocation configurations, followed by a brief discussion of the shortcomings of the classical theory in predicting plasticity of crystals. In this regard, the lack of connection between the evolution of the dislocation field and internal stress state of the crystal is particularly highlighted. The more recent phenomenological and statistically-based formalisms of continuum dislocation dynamics are then introduced. As discussed in the pertinent sections, these formalisms properly connect the evolution of the dislocation fields with the internal stress state in and thus offer frameworks for predicting the plastic behavior of crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acharya A (2001) A model of crystal plasticity based on the theory of continuously distributed dislocations. J Mech Phys Solids 49(4):761–784

    Article  ADS  Google Scholar 

  • Acharya A (2003) Driving forces and boundary conditions in continuum dislocation mechanics. Proc R Soc Lond A Math Phys Eng Sci 459(2034):1343–1363

    Article  ADS  MathSciNet  Google Scholar 

  • Acharya A (2004) Constitutive analysis of finite deformation field dislocation mechanics. J Mech Phys Solids 52(2):301–316

    Article  ADS  MathSciNet  Google Scholar 

  • Acharya A (2011) Microcanonical entropy and mesoscale dislocation mechanics and plasticity. J Elast 104(1–2):23–44

    Article  MathSciNet  Google Scholar 

  • Acharya A, Roy A (2006) Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of mesoscopic field dislocation mechanics: part I. J Mech Phys Solids 54(8):1687–1710

    Article  ADS  MathSciNet  Google Scholar 

  • Argon A (2008) Strengthening mechanisms in crystal plasticity . Oxford University Press, New York

    Google Scholar 

  • Bulatov V, Cai W (2006) Computer simulations of dislocation. Oxford University Press, New York

    MATH  Google Scholar 

  • Chen YS, Choi W, Papanikolaou S, Sethna JP (2010) Bending crystals: emergence of fractal dislocation structures. Phys Rev Lett 105(10):105501

    Article  ADS  Google Scholar 

  • de Wit R (1970) Linear theory of static disclinations. In: Simmons J, de Wit R, Bullough R (eds) Fundamental aspects of dislocation theory: national bureau of standards special publication 317, vol I. National Bureau of Standards, Washington, pp 651–680

    Google Scholar 

  • de Wit R (1973) Theory of disclinations: II. Continuous and discrete disclinations in anisotropic elasticity. J Res Natl Bur Stand Phys Chem 77:49–100

    Google Scholar 

  • Eisenberg M (1990) On viscoplasticity and continuum dislocation theory. In: Weng G, Taya M, Abe H (eds) Micromechanics and inhomogeneity: the Toshio Mura 65th anniversary volume. Springer, New York, pp 115–126

    Chapter  Google Scholar 

  • El-Azab A (2000) Statistical mechanics treatment of the evolution of dislocation distributions in single crystals. Phys Rev B 61:11956–11966

    Article  ADS  Google Scholar 

  • Ghoniem NM, Amodeo R (1988) Computer simulation of dislocation pattern formation. Solid State Phenom 3&4:377–388

    Google Scholar 

  • Groma I (1997) Link between the microscopic and mesoscopic length scale description of the collective behavior of dislocations. Phys Rev B 56:5807–5813

    Article  ADS  Google Scholar 

  • Groma I, Csikor F, Zaiser M (2003) Spatial correlations in higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater 51:1271–1281

    Article  Google Scholar 

  • Hirsch P, Cockayne D, Spence J, Whelan M (2006) 50 years of TEM of dislocations: past, present and future. Philos Mag 86:4519–4528

    Article  ADS  Google Scholar 

  • Hirth J (1985) A brief history of dislocation theory. Metall Trans A 16:2085–2090

    Article  Google Scholar 

  • Hirth J, Lothe J (1982) Theory of dislocations. Wiley, New York

    MATH  Google Scholar 

  • Hochrainer T (2015) Multipole expansion of continuum dislocations dynamics in terms of alignment tensors. Philos Mag 95(12):1321–1367

    Article  ADS  Google Scholar 

  • Hochrainer T (2016) Thermodynamically consistent continuum dislocation dynamics. J Mech Phys Solids 88:12–22

    Article  ADS  MathSciNet  Google Scholar 

  • Hochrainer T, Zaiser M, Gumbsch P (2007) A three-dimensional continuum theory of dislocation systems: kinematics and mean-field formulation. Philos Mag 87(8–9):1261–1282

    Article  ADS  Google Scholar 

  • Hochrainer T, Zaiser M, Gumbsch P (2009) Dislocation transport and line length increase in averaged descriptions of dislocations. AIP Conf Proc 1168(1):1133–1136. https://doi.org/10.1063/1.3241258

    Article  ADS  Google Scholar 

  • Hochrainer T, Sandfeld S, Zaiser M, Gumbsch P (2014) Continuum dislocation dynamics: towards a physical theory of crystal plasticity. J Mech Phys Solids 63:167–178

    Article  ADS  Google Scholar 

  • Kooiman M (2015) Collective dynamics of dislocations. Technical University of Eindhoven, Eindhoven

    Google Scholar 

  • Kosevich A (1962) The deformation field in an anisotropic elastic medium containing moving dislocations. Sov Phys JETP 15:108–115

    MathSciNet  MATH  Google Scholar 

  • Kosevich A (1965) Dynamical theory of dislocations. Sov Phys USPEKHI 7:837–854

    Article  ADS  MathSciNet  Google Scholar 

  • Kosevich A (1979) Crystal dislocations and the theory of elasticity. In: Nabarro F (ed) Dislocations in solids, vol 1. North-Holland, Amsterdam, pp 33–141

    Google Scholar 

  • Kossecka E (1974) Mathematical theory of defects. Part I. Statics. Arch Mech 26:995–1010

    MathSciNet  MATH  Google Scholar 

  • Kossecka E (1975) Mathematical theory of defects. Part II. Dynamics. Arch Mech 27:79–92

    MATH  Google Scholar 

  • Kossecka E, de Wit R (1977a) Disclination dynamics. Arch Mech 29:749–767

    MathSciNet  MATH  Google Scholar 

  • Kossecka E, de Wit R (1977b) Disclination kinematics. Arch Mech 29:633–651

    MathSciNet  MATH  Google Scholar 

  • Kröner E (1981) Continuum theory of defects. In: Balian R, Kléman M, Poirier JP (eds) Continuum theory of defects. North-Holland, Amsterdam, pp 217–315

    Google Scholar 

  • Kröner E (1995) Dislocation in crystals and in continua: a confrontation. Int J Eng Sci 31:2127–2135

    Article  MathSciNet  Google Scholar 

  • Kröner E (1996) Dislocation theory as a physical field theory. Meccanica 31:577–587

    Article  MathSciNet  Google Scholar 

  • Kubin L (2013) Dislocations, mesoscale simulations and plastic flow, vol 5. Oxford University Press, Oxford

    Book  Google Scholar 

  • Lepinoux J, Kubin LP (1987) The dynamic organization of dislocation-structures: a simulation. Scripta Metall Mater 21(6):833–838

    Article  Google Scholar 

  • Limkumnerd S, Sethna JP (2006) Mesoscale theory of grains and cells: crystal plasticity and coarsening. Phys Rev Lett 96(9):095503

    Article  ADS  Google Scholar 

  • Lubarda V (2002) Elastoplasticity theory. CRC Press LLC, New York

    MATH  Google Scholar 

  • McDowell D (2010) A perspective on trends in multiscale plasticity. Int J Plast 26:1280–1309

    Article  Google Scholar 

  • Monavari M, Zaiser M, Sandfeld S (2014) Comparison of closure approximations for continuous dislocation dynamics. MRS Online Proceedings Library Archive 1651

    Google Scholar 

  • Mura T (1963) Continuous distribution of moving dislocations. Philos Mag 8:843–857

    Article  ADS  Google Scholar 

  • Mura T (1968) Continuum theory of dislocations and plasticity. In: Kröner E (ed) Mechanics of generalized continua. Springer, New York, pp 269–278

    Chapter  Google Scholar 

  • Mura T (1969) Method of continuously distributed dislocations. In: Mura T (ed) Mathematical theory of dislocations. American Society of Mechanical Engineers, New York, pp 25–48

    Google Scholar 

  • Mura T (1987) Micromechanics of defects in solids. Matinus-Nijhoff Publishers, Dordrecht

    Book  Google Scholar 

  • Nye JF (1953) Some geometrical relations in dislocation crystals. Acta Metall 1:153–162

    Article  Google Scholar 

  • Orowan E (1934) The crystal plasticity. III: about the mechanism of the sliding. Z Physik 89: 634–659

    Article  ADS  Google Scholar 

  • Öttinger HC (2005) Beyond equilibrium thermodynamics. Wiley Interscience Publishers, Hoboken

    Book  Google Scholar 

  • Polanyi M (1934) Lattice distortion which originates plastic flow. Z Phys 89(9–10):660–662

    Article  ADS  Google Scholar 

  • Puri S, Das A, Acharya A (2011) Mechanical response of multicrystalline thin films in mesoscale field dislocation mechanics. J Mech Phys Solids 59(11):2400–2417

    Article  ADS  Google Scholar 

  • Roters F, Eisenlohr P, Hancherli L, Tjahjanto D, Bieler T, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Int J Plast 58:1152–1211

    Google Scholar 

  • Roy A, Acharya A (2005) Finite element approximation of field dislocation mechanics. J Mech Phys Solids 53(1):143–170

    Article  ADS  Google Scholar 

  • Roy A, Acharya A (2006) Size effects and idealized dislocation microstructure at small scales: predictions of a phenomenological model of mesoscopic field dislocation mechanics: part II. J Mech Phys Solids 54(8):1711–1743

    Article  ADS  MathSciNet  Google Scholar 

  • Sandfeld S, Zaiser M (2015) Pattern formation in a minimal model of continuum dislocation plasticity. Modell Simul Mater Sci Eng 23(6):065005

    Article  ADS  Google Scholar 

  • Sandfeld S, Hochrainer T, Gumbsch P, Zaiser M (2010) Numerical implementation of a 3D continuum theory of dislocation dynamics and application to micro-bending. Philos Mag 90(27–28):3697–3728

    Article  ADS  Google Scholar 

  • Sandfeld S, Hochrainer T, Zaiser M, Gumbsch P (2011) Continuum modeling of dislocation plasticity: theory, numerical implementation, and validation by discrete dislocation simulations. J Mater Res 26(5):623–632

    Article  ADS  Google Scholar 

  • Taylor GI (1934) The mechanism of plastic deformation of crystals. Part I. Theoretical. Proc R Soc Lond Ser A 145(855):362–387

    Article  ADS  Google Scholar 

  • Valdenaire PL, Le Bouar Y, Appolaire B, Finel A (2016) Density-based crystal plasticity: from the discrete to the continuum. Phys Rev B 93:214111

    Article  ADS  Google Scholar 

  • Walgraef D, Aifantis E (1988) Plastic instabilities, dislocation patterns and nonequilibrium phenomena. Res Mech 23:161–195

    Google Scholar 

  • Willis JR (1967) Second-order effects of dislocations in anisotropic crystals. Int J Eng Sci 5(2):171–190

    Article  Google Scholar 

  • Xia S, El-Azab A (2015a) A preliminary investigation of dislocation cell structure formation in metals using continuum dislocation dynamics. IOP Conf Ser Mater Sci Eng 89:012053:1–9

    Google Scholar 

  • Xia S, El-Azab A (2015b) Computational modeling of mesoscale dislocation patterning and plastic deformation of single crystals. Modell Simul Mater Sci Eng 23:055009:1–26

    Google Scholar 

  • Xia S, Belak J, El-Azab A (2016) The discrete-continuum connection in dislocation dynamics: I. Time coarse graining of cross slip. Modell Simul Mater Sci Eng 24:075007:1–22

    Google Scholar 

  • Yefimov M, van der Giessen E (2004) Size effect in single crystal thin films: nonlocal crystal plasticity simulations. Eur J Mech A Solids 24:183–193

    Article  Google Scholar 

  • Yefimov M, van der Giessen E (2005) Multiple slip in a strain-gradient plasticity model motivated by a statistical-mechanics description of dislocations. Int J Solids Struct 42:3375–3394

    Article  Google Scholar 

  • Yefimov M, Groma I, van der Giessen E (2004a) A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J Mech Phys Solids 52: 279–300

    Article  ADS  MathSciNet  Google Scholar 

  • Yefimov M, van der Giessen E, Groma I (2004b) Bending of a single crystal: discrete dislocations and nonlocal crystal plasticity simulations. Modell Simul Mater Sci Eng 12:1069–1086

    Article  ADS  Google Scholar 

  • Zaiser M, Miguel MC, Groma I (2001) Statistical dynamics of dislocation systems: the influence of dislocation-dislocation correlations. Phys Rev B 64:224102:1–9

    Google Scholar 

Download references

Acknowledgements

Anter El-Azab was supported by the US Department of Energy, Office of Science, Division of Materials Sciences and Engineering, through award number DE-SC0017718, and by the National Science Foundation, Division of Civil, Mechanical, and Manufacturing Innovation (CMMI), through award number 1663311 at Purdue University. Giacomo Po acknowledges the support of the US Department of Energy, Office of Fusion Energy, through the DOE award number DE-FG02-03ER54708; the Air Force Office of Scientific Research (AFOSR), through award number FA9550-11-1-0282; and the National Science Foundation, Division of Civil, Mechanical, and Manufacturing Innovation (CMMI), through award number 1563427 with UCLA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anter El-Azab .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

El-Azab, A., Po, G. (2018). Continuum Dislocation Dynamics: Classical Theory and Contemporary Models. In: Andreoni, W., Yip, S. (eds) Handbook of Materials Modeling . Springer, Cham. https://doi.org/10.1007/978-3-319-42913-7_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42913-7_18-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42913-7

  • Online ISBN: 978-3-319-42913-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics