Skip to main content

Solving Manufacturing Cell Design Problems by Using a Dolphin Echolocation Algorithm

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2016 (ICCSA 2016)

Abstract

The Manufacturing Cell Design is a problem that consist in organize machines in cells to increase productivity, i.e., minimize the movement of parts for a given product between machines. In order to solve this problem we use a Dolphin Echolocation algorithm, a recent bio-inspired metaheuristic based on a dolphin feature, the echolocation. This feature is used by the dolphin to search all around the search space for a target, then the dolphin exploits the surround area in order to find promising solutions. Our approach has been tested by using a set of 10 benchmark instances with several configurations, reaching to optimal values for all of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aljaber, N., Baek, W., Chen, C.-L.: A tabu search approach to the cell formation problem. Comput. Ind. Eng. 32(1), 169–185 (1997)

    Article  Google Scholar 

  2. Boctor, F.F.: A linear formulation of the machine-part cell formation problem. Int. J. Prod. Res. 29(2), 343–356 (1991)

    Article  Google Scholar 

  3. Boulif, M., Atif, K.: A new branch-&-bound-enhanced genetic algorithm for the manufacturing cell formation problem. Comput. Oper. Res. 33(8), 2219–2245 (2006)

    Article  MATH  Google Scholar 

  4. Durán, O., Rodriguez, N., Consalter, L.A.: Collaborative particle swarm optimization with a data mining technique for manufacturing cell design. Expert Syst. Appl. 37(2), 1563–1567 (2010)

    Article  Google Scholar 

  5. Gupta, Y., Gupta, M., Kumar, A., Sundaram, C.: A genetic algorithm-based approach to cell composition and layout design problems. Int. J. Prod. Res. 34(2), 447–482 (1996)

    Article  MATH  Google Scholar 

  6. James, T.L., Brown, E.C., Keeling, K.B.: A hybrid grouping genetic algorithm for the cell formation problem. Comput. Oper. Res. 34(7), 2059–2079 (2007)

    Article  MATH  Google Scholar 

  7. Kaveh, A., Farhoudi, N.: A new optimization method: dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013)

    Article  Google Scholar 

  8. Kusiak, A., Chow, W.S.: Efficient solving of the group technology problem. J. Manuf. Syst. 6(2), 117–124 (1987)

    Article  Google Scholar 

  9. Lozano, S., Adenso-Diaz, B., Eguia, I., Onieva, L., et al.: A one-step tabu search algorithm for manufacturing cell design. J. Oper. Res. Soc. 50(5), 509–516 (1999)

    Article  MATH  Google Scholar 

  10. Nsakanda, A.L., Diaby, M., Price, W.L.: Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings. Eur. J. Oper. Res. 171(3), 1051–1070 (2006)

    Article  MATH  Google Scholar 

  11. Oliva-Lopez, E., Purcheck, G.F.: Load balancing for group technology planning and control. Int. J. Mach. Tool Des. Res. 19(4), 259–274 (1979)

    Article  Google Scholar 

  12. Purcheck, G.F.K.: A linear-programming method for the combinatorial grouping of an incomplete power set (1975)

    Google Scholar 

  13. Sankaran, S., Rodin, E.Y.: Multiple objective decision making approach to cell formation: a goal programming model. Math. Comput. Model. 13(9), 71–81 (1990)

    Article  MATH  Google Scholar 

  14. Shafer, S.M., Rogers, D.F.: A goal programming approach to the cell formation problem. J. Oper. Manag. 10(1), 28–43 (1991)

    Article  Google Scholar 

  15. Soto, R., Kjellerstrand, H., Durán, O., Crawford, B., Monfroy, E., Paredes, F.: Cell formation in group technology using constraint programming and boolean satisfiability. Expert Syst. Appl. 39(13), 11423–11427 (2012)

    Article  Google Scholar 

  16. Venugopal, V., Narendran, T.T.: A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Comput. Ind. Eng. 22(4), 469–480 (1992)

    Article  Google Scholar 

  17. Tai-Hsi, W., Chang, C.-C., Chung, S.-H.: A simulated annealing algorithm for manufacturing cell formation problems. Expert Syst. Appl. 34(3), 1609–1617 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Ricardo Soto is supported by grant CONICYT/FONDECYT/REGULAR/1160455, Broderick Crawford is supported by grant CONICYT/FONDECYT/REGULAR/1140897, Victor Reyes is supported by grant INF-PUCV 2015, and Ignacio Araya is supported by grant CONICYT/FONDECYT/REGULAR/ 1160224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Reyes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Soto, R. et al. (2016). Solving Manufacturing Cell Design Problems by Using a Dolphin Echolocation Algorithm. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2016. ICCSA 2016. Lecture Notes in Computer Science(), vol 9790. Springer, Cham. https://doi.org/10.1007/978-3-319-42092-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42092-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42091-2

  • Online ISBN: 978-3-319-42092-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics