Skip to main content

Design Rules and Methods to Improve Joint Strength

  • Living reference work entry
  • First Online:
Handbook of Adhesion Technology

Abstract

One of the main reasons for the increasing use of adhesive bonding is the fact that the stress distribution is more uniform than with other conventional methods of joining which enables to reduce weight. However, even in adhesive joints the stress distribution is not perfectly uniform and this leaves room for improvements. The major enemy of adhesive joints is peel or cleavage stresses. These should be reduced if strong joints are to be designed. In this chapter, the main factors influencing the joint strength are first discussed. The focus is on lap joints because these are the most common. Methods are then proposed to improve the joint strength by using fillets, adherend profiling, and other geometric solutions. Hybrid joining is also a possibility to improve the strength of adhesive joints, and adhesives may be used in conjunction with rivet or bolts, for example. Joints may be damaged in some way and it is important to discuss also methods to guarantee an efficient repair design. Finally, configurations are recommended for several types of joints such as butt joints, strap joints, cylindrical joints, and T joints. The main rule for all cases is to spread the load over a large area and reduce the peel stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adams RD, Harris JA (1987) The influence of local geometry on the strength of adhesive joints. Int J Adhes Adhes 7:69

    Article  Google Scholar 

  • Adams RD, Peppiatt NA (1974) Stress analysis of adhesive-bonded lap joints. J Strain Anal 9:185

    Article  Google Scholar 

  • Adams RD, Peppiatt NA (1977) Stress analysis of adhesively-bonded tubular lap joints. J Adhes 9:1

    Article  Google Scholar 

  • Adams RD, Atkins RW, Harris JA, Kinloch AJ (1986) Stress analysis and failure properties of carbon-fibre-reinforced-plastic/steel double-lap joints. J Adhes 20:29

    Article  Google Scholar 

  • Adams RD, Comyn J, Wake WC (1997) Structural adhesive joints in engineering, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Al-Samhann A, Darwish SM (2003) Strength prediction of weld-bonded joints. Int J Adhes Adhes 23:23

    Article  Google Scholar 

  • Apalak MK (2002) On the non-linear elastic stresses in an adhesively bonded T-joint with double support. J Adhes Sci Technol 16:459

    Article  Google Scholar 

  • Apalak MK, Davies R (1993) Analysis and design of adhesively bonded comer joints. Int J Adhes Adhes 13:219

    Article  Google Scholar 

  • Apalak MK, Gunes R (2007) Elastic flexural behaviour of an adhesively bonded single lap joint with functionally graded adherends. Mater Design 28:1597

    Article  Google Scholar 

  • Ávila AF, Bueno PO (2004) Stress analysis on a wavy-lap bonded joint for composites. Int J Adhes Adhes 24:407

    Article  Google Scholar 

  • Bahei-El-Din YA, Dvorak GJ (2001) New designs of adhesive joints for thick composite laminates. Compos Sci Technol 61:19

    Article  Google Scholar 

  • Bouiadjra BB, Fekirini H, Belhouari M, Boutabout B, Serier B (2007) Fracture energy for repaired cracks with bonded composite patch having two adhesive bands in aircraft structures. Comput Mater Sci 40:20

    Article  Google Scholar 

  • Braga DFO, de Sousa LMC, da Silva LFM, Moreira PMGP (2016) Aluminium friction stir weldbonding joints. J Adhes 92:665

    Article  Google Scholar 

  • Campilho RDSG, de Moura MFSF, Domingues JJMS (2007) Stress and failure analyses of scarf repaired CFRP laminates using a cohesive damage model. J Adhes Sci Technol 21:855

    Article  Google Scholar 

  • Campilho RDSG, Pinto AMG, Banea MD, da Silva LFM (2012) Optimization study of hybrid spot-welded/bonded single-lap joints. Int J Adhes Adhes 37:86

    Article  Google Scholar 

  • Carbas RJC, Critchlow GW, da Silva LFM (2014) Adhesively bonded functionally graded joints by induction heating. Int J Adhes Adhes 48:110

    Article  Google Scholar 

  • Chan WS, Vedhagiri S (2001) Analysis of composite bonded/bolted joints used in repairing. J Compos Mater 35:1045

    Article  Google Scholar 

  • Cherry BW, Harrison NL (1970) The optimum profile for a lap joint. J Adhes 2:125

    Article  Google Scholar 

  • Crocombe AD (1989) Global yielding as a failure criterion for bonded joints. Int J Adhes Adhes 9:145

    Article  Google Scholar 

  • Crocombe AD, Adams RD (1981) Influence of the spew fillet and other parameters on the stress distribution in the single lap joint. J Adhes 13:141

    Article  Google Scholar 

  • Darwish SM (2004) Analysis of weld-bonded dissimilar materials. Int J Adhes Adhes 24:347

    Article  Google Scholar 

  • Darwish SM, Al-Samhann A (2004) Design rationale of weld-bonded joints. Int J Adhes Adhes 24:367

    Article  Google Scholar 

  • Dorn L, Liu W (1993) The stress state and failure properties of adhesive-bonded plastic/metal joints. Int J Adhes Adhes 13:21

    Article  Google Scholar 

  • Dragoni E, Goglio L, Kleiner F (2010) Designing bonded joints by means of the JointCalc software. Int J Adhes Adhes 30:267

    Article  Google Scholar 

  • Dvorak GJ, Zhang J, Canyurt O (2001) Adhesive tongue-and-groove joints for thick composite laminates. Compos Sci Technol 61:1123

    Article  Google Scholar 

  • Feih S, Shercliff HR (2005) Adhesive and composite failure prediction of single-L joint structures under tensile loading. Int J Adhes Adhes 25:47

    Article  Google Scholar 

  • Fessel G, Broughton JG, Fellows NA, Durodola JF, Hutchinson AR (2007) Evaluation of different lap-shear joint geometries for automotive applications. Int J Adhes Adhes 27:574

    Article  Google Scholar 

  • Gannesh VK, Choo TS (2002) Modulus graded composite adherends for single-lap bonded joints. J Compos Mater 36:1757

    Article  Google Scholar 

  • Gleich DM, van Tooren MJL, Beukers A (2001) Analysis and evaluation of bondline thickness effects on failure load in adhesively bonded structures. J Adhes Sci Technol 15:1091

    Article  Google Scholar 

  • Goland M, Reissner E (1944) The stresses in cemented joints. J Appl Mech 66:A17

    Google Scholar 

  • Grant LDR, Adams RD, da Silva LFM (2009a) Experimental and numerical analysis of single lap joints for the automotive industry. Int J Adhes Adhes 29:405

    Article  Google Scholar 

  • Grant LDR, Adams RD, da Silva LFM (2009b) Experimental and numerical analysis of T-peel for the automotive industry. J Adhes Sci Technol 23:317

    Article  Google Scholar 

  • Grant LDR, Adams RD, da Silva LFM (2009c) Effect of the temperature on the strength of adhesively-bonded single lap and T joints for the automotive industry. Int J Adhes Adhes 29:535

    Article  Google Scholar 

  • Grassi M, Cox B, Zhang X (2006) Simulation of pin-reinforced single-lap composite joints. Compos Sci Technol 66:1623

    Article  Google Scholar 

  • Groth HL (1988) Stress singularities and fracture at interface corners in bonded joints. Int J Adhes Adhes 8:107

    Article  Google Scholar 

  • Gunnion AJ, Herszberg I (2006) Parametric study of scarf joints in composite structures. Compos Struct 75:364

    Article  Google Scholar 

  • Harris JA, Adams RD (1984) Strength prediction of bonded single lap joints by non-linear finite element methods. Int J Adhes Adhes 4:65

    Article  Google Scholar 

  • Hart-Smith LJ (1973) Adhesive bonded double lap joints. NASA CR-112235

    Google Scholar 

  • Hildebrand M (1994) Non-linear analysis and optimization of adhesively bonded single lap joints between fibre-reinforced plastics and metals. Int J Adhes Adhes 14:261

    Article  Google Scholar 

  • Kaye RH, Heller M (2002) Through-thickness shape optimisation of bonded repairs and lap-joints. Int J Adhes Adhes 22:7

    Article  Google Scholar 

  • Kaye R, Heller M (2005) Through-thickness shape optimisation of typical double lap-joints including effects of differential thermal contraction during curing. Int J Adhes Adhes 25:227

    Article  Google Scholar 

  • Keimel FA (1966) In: Bodnar MJ (ed) Applied polymer symposium no 3. Wiley, New York, p 27

    Google Scholar 

  • Kim H (2003) The influence of adhesive bondline thickness imperfections on stresses in composite joints. J Adhes 79:621

    Article  Google Scholar 

  • Kim KS, Kim WT, Lee DG, Jun EJ (1992) Optimal tubular adhesive-bonded lap joint of the carbon fiber epoxy composite shaft. Compos Struct 21:163

    Article  Google Scholar 

  • Kohen GW (1954) Design manual on adhesives. Machine Design, April

    Google Scholar 

  • Kukovyakin VM, Skoryi IA (1972) Estimating the strength of bonded cylindrical joints. Russ Engng J 52:40

    Google Scholar 

  • Kwon JW, Lee DG (2000) The effects of surface roughness and bond thickness on the fatigue life of adhesively bonded tubular single lap joints. J Adhes Sci Technol 14:1085

    Article  Google Scholar 

  • Lang TP, Mallick PK (1998) Effect of spew geometry on stresses in single lap adhesive joints. Int J Adhes Adhes 18:167

    Article  Google Scholar 

  • Lang TP, Mallick PK (1999) The effect of recessing on the stresses in adhesively bonded single-lap joints. Int J Adhes Adhes 19:257

    Article  Google Scholar 

  • Lin W-H, Jen M-HR (1999) The strength of bolted and bonded single-lapped composite joints in tension. J Compos Mater 33:640

    Article  Google Scholar 

  • Liu J, Sawa T (2001) Stress analysis and strength evaluation of single-lap adhesive joints combined with rivets under external bending moments. J Adhes Sci Technol 15:43

    Article  Google Scholar 

  • Liu J, Liu J, Sawa T (2004) Strength and failure of bulky adhesive joints with adhesively-bonded columns. J Adhes Sci Technol 18:1613

    Article  Google Scholar 

  • Lubkin JL, Reissner E (1956) Stress distribution and design data for adhesive lap joints between circular tubes. ASME 78:1213

    Google Scholar 

  • Marcadon V, Nadot Y, Roy A, Gacougnolle JL (2006) Fatigue behaviour of T-joints for marine applications. Int J Adhes Adhes 26:481

    Article  Google Scholar 

  • Marques EAS, da Silva LFM (2008) Joint strength optimization of adhesively bonded patches. J Adhes 84:917

    Article  Google Scholar 

  • Marques EAS, Magalhães DNM, da Silva LFM (2011) Experimental study of silicone-epoxy dual adhesive joints for high temperature aerospace applications. Materwiss Werksttech 42:471

    Article  Google Scholar 

  • Moroni F, Pirondi A, Kleiner F (2010) Experimental analysis and comparison of the strength of simple and hybrid structural joints. Int J Adhes Adhes 30:367

    Article  Google Scholar 

  • de Moura MFSF, Daniaud R, Magalhães AG (2006) Simulation of mechanical behaviour of composite bonded joints containing strip defects. Int J Adhes Adhes 26:464

    Article  Google Scholar 

  • Nakagawa F, Sawa T (2001) Photoelastic thermal stress measurements in scarf adhesive joints under uniform temperature changes. J Adhes Sci Technol 15:119

    Article  Google Scholar 

  • Nakagawa F, Sawa T, Nakano Y, Katsuo M (1999) Two-dimensional finite element thermal stress analysis of adhesive butt joints containing some hole defects. J Adhes Sci Technol 13:309

    Article  Google Scholar 

  • National Physical Laboratory (2007) Design and testing of bounded and bolted joints. Queen’s Printer, Scotland

    Google Scholar 

  • das Neves PJC, da Silva LFM, Adams RD (2009a) Analysis of mixed adhesive bonded joints – part I: theoretical formulation. J Adhes Sci Technol 23:1

    Article  Google Scholar 

  • das Neves PJC, da Silva LFM, Adams RD (2009b) Analysis of mixed adhesive bonded joints – part II: parametric study. J Adhes Sci Technol 23:35

    Article  Google Scholar 

  • Odi RA, Friend CM (2002) A comparative study of finite element models for the bonded repair of composite structures. J Reinf Plast Comp 21:311

    Article  Google Scholar 

  • Petrie EM (2000) Handbook of adhesives and sealants. McGraw-Hill, New York

    Google Scholar 

  • Pires I, Quintino L, Durodola JF, Beevers A (2003) Performance of bi-adhesive bonded aluminium lap joints. Int J Adhes Adhes 23:215

    Article  Google Scholar 

  • Pirondi A, Moroni F (2009) Clinch-bonded and rivet-bonded hybrid joints: application of damage models for simulation of forming and failure. J Adhes Sci Technol 23:1547

    Article  Google Scholar 

  • Rispler AR, Tong L, Steven GP, Wisnom MR (2000) Shape optimisation of adhesive fillets. Int J Adhes Adhes 20:221

    Article  Google Scholar 

  • Sancaktar E, Kumar S (2000) Selective use of rubber toughening to optimize lap-joint strength. J Adhes Sci Technol 14:1265

    Article  Google Scholar 

  • Sancaktar E, Lawry P (1980) A photoelastic study of stress distribution in adhesively bonded joints with prebent adherends. J Adhes 11:233

    Article  Google Scholar 

  • Sancaktar E, Nirantar P (2003) Increasing strength of single lap joints of metal adherends by taper minimization. J Adhes Sci Technol 17:655

    Article  Google Scholar 

  • Sancaktar E, Simmons SR (2000) Optimization of adhesively-bonded single lap joints by adherend notching. J Adhes Sci Technol 14:1363

    Article  Google Scholar 

  • da Silva LFM, Adams RD (2002) The strength of adhesively bonded T-joints. Int J Adhes Adhes 22:311

    Article  Google Scholar 

  • da Silva LFM, Adams RD (2007a) Techniques to reduce the peel stresses in adhesive joints with composites. Int J Adhes Adhes 27:227

    Article  Google Scholar 

  • da Silva LFM, Adams RD (2007b) Joint strength predictions for adhesive joints to be used over a wide temperature range. Int J Adhes Adhes 27:362

    Article  Google Scholar 

  • da Silva LFM, Adams RD (2007c) Adhesive joints at high and low temperatures using similar and dissimilar adherends and dual adhesives. Int J Adhes Adhes 27:216

    Article  Google Scholar 

  • da Silva LFM, Lopes MJCQ (2009) Joint strength optimization by the mixed adhesive technique. Int J Adhes Adhes 29:509

    Article  Google Scholar 

  • da Silva LFM, Adams RD, Gibbs M (2004) Manufacture of adhesive joints and bulk specimens with high-temperature adhesives. Int J Adhes Adhes 24:69

    Article  Google Scholar 

  • da Silva LFM, Rodrigues T, Figueiredo MAV, de Moura M, Chousal JAG (2006) Effect of adhesive type and thickness on the lap shear strength. J Adhes 82(11):1091

    Article  Google Scholar 

  • da Silva LFM, Critchlow GW, Figueiredo MAV (2008) Parametric study of adhesively bonded single lap joints by the Taguchi method. J Adhes Sci Technol 22(13):1477

    Article  Google Scholar 

  • da Silva LFM, das Neves PJC, Adams RD, Wang A, Spelt JK (2009a) Analytical models of adhesively bonded joints – part II: comparative study. Int J Adhes Adhes 29:331

    Article  Google Scholar 

  • da Silva LFM, das Neves PJC, Adams RD, Spelt JK (2009b) Analytical models of adhesively bonded joints – part I: literature survey. Int J Adhes Adhes 29:319

    Article  Google Scholar 

  • da Silva LFM, Lima RFT, Teixeira RMS (2009c) Development of a computer program for the design of adhesive joints. J Adhes 85:889

    Article  Google Scholar 

  • da Silva LFM, Pirondi A, Oschner A (2011) Hybrid adhesive joints, 1st edn. Springer, Heidelberg

    Book  Google Scholar 

  • Soutis C, Hu FZ (1997) Design and performance of bonded patch repairs of composite structures. Proc Instn Mech Engrs Part G 211:263

    Article  Google Scholar 

  • Temiz S (2006) Application of bi-adhesive in double-strap joints subjected to bending moment. J Adhes Sci Technol 20:1547

    Article  Google Scholar 

  • Terekhova LP, Skoryi IA (1973) Stresses in bonded joints of thin cylindrical shells. Strength Mater 4:1271

    Article  Google Scholar 

  • Tong L, Sun X (2003) Nonlinear stress analysis for bonded patch to curved thin-walled structures. Int J Adhes Adhes 23:349

    Article  MATH  Google Scholar 

  • Tsai MY, Morton J (1995) The effect of a spew fillet on adhesive stress distributions in laminated composite single-lap joints. Compos Struct 32:123

    Article  Google Scholar 

  • Volkersen O (1938) Die nietkraftoerteilung in zubeanspruchten nietverbindungen mit konstanten loschonquerschnitten. Luftfahrtforschung 15:41–47

    Google Scholar 

  • Zhao X, Adams RD, da Silva LFM (2011a) Single lap joints with rounded adherend corners: stress and strain analysis. J Adhes Sci Tech 25:819

    Article  Google Scholar 

  • Zhao X, Adams RD, da Silva LFM (2011b) Single lap joints with rounded adherend corners: experimental results and strength prediction. J Adhes Sci Tech 25:837

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Filipe Martins da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

da Silva, L.F.M., Marques, E.A.S., Campilho, R.D.S.G. (2017). Design Rules and Methods to Improve Joint Strength. In: da Silva, L., Öchsner, A., Adams, R. (eds) Handbook of Adhesion Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-42087-5_27-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42087-5_27-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42087-5

  • Online ISBN: 978-3-319-42087-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics