Skip to main content

Suitability of Different Mediterranean Plants for Phytoremediation of Mine Soils Affected with Cadmium

  • Chapter
  • First Online:
Book cover Phytoremediation

Abstract

Mine residues dumped on the environment as overburden or tailings ponds show environmental and human health hazards by the transfer of heavy metals through erosion or leaching. The objective of this study was to assess the potential use of different Mediterranean plant species for phytostabilization or phytoextraction of cadmium in acidic mine residues. For this purpose, a reclamation strategy was carried out in a mine tailing based on the use of phytoremediation aided with three different amendments (pig slurry, pig manure, and marble waste). –Six Mediterranean species were introduced: Lygeum spartum, Atriplex halimus, Helichrysum stoechas, Dittrichia viscosa, Piptatherum miliaceum, and Limonium cossonianum. Soil and plant samples were collected 24 months after remediation works. Results showed that the characteristics of the mine residue improved with the reclamation developed, with increased pH, organic matter and fertility, and decreased salinity. The extractable and exchangeable fractions of Cd decreased 85 % and 96 %, respectively. The tested species (except for A. halimus and L. cossonianum) may be potential candidates for the objectives of Cd phytostabilization since they showed low translocation and bioaccumulation factors. P. miliaceum was the best candidate owing to its lower translocation and bioaccumulation factors, higher biomass, and higher colonization of the area. A. halimus seems a potential candidate for phytoextraction rather than for phytostabilization of soil Cd, with high translocation and bioaccumulation factors, high biomass, and fast growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kabata-Pendias A, Pendias H (1991) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  2. Bradshaw AD (1997) Restoration of mined lands—using natural processes. Ecol Eng 4:255–269

    Article  Google Scholar 

  3. Acosta JA, Faz A, Martínez-Martínez S, Zornoza R, Carmona DM, Kabas S (2011) Multivariate statistical and GIS-based approach to evaluate heavy metals behavior in mine sites for future reclamation. J Geochem Explor 109:8–17

    Article  CAS  Google Scholar 

  4. Kabas S, Faz A, Acosta JA, Zornoza R, Martínez-Martíenz S, Carmona DM, Bech J (2012) Effect of marble waste and pig slurry on the growth of native vegetation and heavy metal mobility in a mine tailing pond. J Geochem Explor 123:69–76

    Article  CAS  Google Scholar 

  5. Brown SL, Sprenger M, Maxemchuk A, Compton H (2005) Ecosystem function in alluvial tailings after biosolids and lime application. J Environ Qual 34:1–6

    Article  Google Scholar 

  6. Alvarenga P, Gonçalves AP, Palma P, Baião N, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2008) Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin. Chemosphere 72:1774–1781

    Article  CAS  PubMed  Google Scholar 

  7. Hattab N, Motelica-Heino M, Faure O, Bouchardon JL (2015) Effect of fresh and mature organic amendments on the phytoremediation of technosols contaminated with high concentrations of trace elements. J Environ Manage 159:37–47

    Article  CAS  PubMed  Google Scholar 

  8. Li YY, Chen LQ, Wen HY (2015) Changes in the composition and diversity of bacterial communities 13 years after soil reclamation of abandoned mine land in eastern China. Ecol Res 30:357–366

    Article  Google Scholar 

  9. Kabas S, Acosta JA, Zornoza R, Faz A, Carmona DM, Martinez-Martinez S (2011) Integration of landscape reclamation and design in a mine tailing in Cartagena-La Unión, SE Spain. Int J Energy Environ 5:301–308

    Google Scholar 

  10. Mendez MO, Maier RM (2008) Phytostabilisation of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  PubMed  Google Scholar 

  11. Senesi N, Plaza C, Brunetty G, Polo A (2007) A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biol Biochem 39:1244–1262

    Article  CAS  Google Scholar 

  12. Zanuzzi A, Arocena JM, van Mourik JM, Faz A (2009) Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology. Geoderma 154:69–75

    Article  CAS  Google Scholar 

  13. Zornoza R, Faz A, Carmona DM, Martínez-Martínez S, Acosta JA (2012) Plant cover and soil biochemical properties in a mine tailing pond five years after application of marble wastes and organic amendments. Pedosphere 22:22–32

    Article  CAS  Google Scholar 

  14. Zornoza R, Faz A, Carmona DM, Acosta JA, Martínez-Martínez S, de Vreng A (2013) Carbon mineralisation, microbial activity and metal dynamics in tailing ponds amended with pig slurry and marble waste. Chemosphere 90:2606–2613

    Article  CAS  PubMed  Google Scholar 

  15. Ye ZH, Shu WS, Zhang ZQ, Lan CY, Wong MH (2002) Evaluation of major constrains to revegetation of lead/zinc mine tailings using bioassay techniques. Chemosphere 47:1103–1111

    Article  CAS  PubMed  Google Scholar 

  16. Barker AV (1997) Composition and uses of compost. In: Rechling JE (ed) Agricultural uses of by-products and wastes. ACS Symposium Series No. 668, vol 10. American Chemical Society, Washington, pp 140–162

    Google Scholar 

  17. Pérez de Mora A, Burgos P, Madejón E, Cabrera F, Jaeckel P, Schloter M (2006) Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol Biochem 38:327–341

    Article  Google Scholar 

  18. Pérez de Mora A, Ortega-Calvo JJ, Cabrera F, Madejón E (2005) Changes in enzyme activities and microbial biomass after “in situ” remediation of a heavy metal-contaminated soil. Appl Soil Ecol 28:125–137

    Article  Google Scholar 

  19. Zornoza R, Carmona DM, Acosta JA, Martínez-Martínez S, Weiss N, Faz A (2011) The effect of former mining activities on contamination dynamics in sediments, surface water and vegetation in El Avenque stream, SE Spain. Water Air Soil Pollut 223:519–532

    Article  Google Scholar 

  20. Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and mine soils. EPA-600/2-78-054

    Google Scholar 

  21. Zornoza R, Guerrero C, Mataix-Solera J, Arcenegui V, García-Orenes F, Mataix-Beneyto J (2006) Assessing air-drying and rewetting pretreatment effect on some soil enzyme activities under semiarid Mediterranean conditions. Soil Biol Biochem 38:2125–2134

    Article  CAS  Google Scholar 

  22. Zornoza R, Guerrero C, Mataix-Solera J, Arcenegui V, García-Orenes F, Mataix-Beneyto J (2007) Assessing the effects of air-drying and rewetting pre-treatment on soil microbial biomass, basal respiration, metabolic quotient and soluble carbon under Mediterranean conditions. Eur J Soil Biol 43:120–129

    Article  CAS  Google Scholar 

  23. Zornoza R, Mataix-Solera J, Guerrero C, Arcenegui V, Mataix-Beneyto J (2009) Storage effects on biochemical properties of air-dried soil samples from Southeastern Spain. Arid Land Res Manag 23:213–222

    Article  CAS  Google Scholar 

  24. Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis 1: Physical and mineralogical methods, 2nd edn. American Society of Agronomy, Madison, pp 383–411

    Google Scholar 

  25. Chapman HD (1965) Cation exchange capacity. In: Black CA (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 891–900

    Google Scholar 

  26. Díez JA (1982) Consideraciones sobre la utilización de la técnica extractiva de Burriel-Hernando para la evaluación de fósforo asimilable en suelos. Anal Edafol Agrobiol 41:1345–1353

    Google Scholar 

  27. Nannipieri P, Ceccanti B, Cervelli S, Matarese E (1980) Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci Soc Am J 44:1011–1016

    Article  CAS  Google Scholar 

  28. Tabatabai MA (1982) Soil enzymes. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, 2nd edn. American Society of Agronomy and Soil Science Society of America, Madison, pp 501–538

    Google Scholar 

  29. Tabatabai MA, Bremner JM (1970) Arylsulphatase activity of soils. Soil Sci Soc Am J 34:225–229

    Article  CAS  Google Scholar 

  30. Risser JA, Baker DE (1990) Testing soils for toxic metals. In: Westerman RL (ed) Soil testing and plant analysis. Soil Science Society of America Special Publication 3, Madison 3, pp 275–298

    Google Scholar 

  31. Lindsay W, Norvell W (1978) Development of a DTPA soil test for Zn, Fe, Mn, and Cu. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  32. Pueyo M, López-Sanchez JF, Rauret G (2004) Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Anal Chim Acta 504:217–226

    Article  CAS  Google Scholar 

  33. Brallier S, Harrison RB, Henry CL, Dongsen X (1996) Liming effects on availability of Cd, Cu, Ni and Zn in soil amended with sewage sludge 16 years previously. Water Air Soil Pollut 86:195–206

    Article  CAS  Google Scholar 

  34. Fernández-Caliani JC, Barba-Brioso C (2010) Metal immobilization in hazardous contaminated miesoils after marble slurry waste application. A field assessment at the Tharsis mining district (Spain). J Hazard Mater 181:817–826

    Article  PubMed  Google Scholar 

  35. Pardo T, Clemente R, Bernal MP (2011) Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Chemosphere 54:642–650

    Article  Google Scholar 

  36. Bouwman LA, Vangronsveld J (2004) Rehabilitation of the nematode fauna in a phytostabilized heavily zinc-contaminated, sandy soil. J Soils Sediments 4:17–23

    Article  CAS  Google Scholar 

  37. Renella G, Landi L, Ascher J, Ceccherini MT, Pietramellara G, Mench M, Nannipieri P (2008) Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils. Environ Pollut 152:702–712

    Article  CAS  PubMed  Google Scholar 

  38. Hinojosa MB, Carreira JA, Rodríguez-Maroto JM, García-Ruíz R (2008) Effects of pyrite sludge pollution on soil enzyme activities: ecological dose-response model. Sci Total Environ 396:89–99

    Article  CAS  PubMed  Google Scholar 

  39. Liu L, Chen H, Cai P, Liang W, Huang Q (2009) Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J Hazard Mater 163:63–567

    Google Scholar 

  40. Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Del Bubba M (2008) Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere 72:1481–1490

    Article  CAS  PubMed  Google Scholar 

  41. Ross SM, Kaye KJ (1994) The meaning of metal toxicity in soil-plant system. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, New York, pp 27–61

    Google Scholar 

  42. Almeida CMR, Mucha AP, Vasconcelos MTSD (2006) Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environ Pollut 142:151–159

    Article  CAS  PubMed  Google Scholar 

  43. Walker DJ, Lutts S, Sánchez-García M, Correal E (2014) Atriplex halimus L.: its biology and uses. J Arid Environ 100–101:111–121

    Article  Google Scholar 

  44. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107

    Google Scholar 

  45. Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Article  Google Scholar 

  46. Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78:32–62

    Article  Google Scholar 

  47. Conesa HM, Faz A, Arnaldos R (2007) Initial studies for the phytostabilization of a mine tailing from the Cartagena–La Union Mining District (SE Spain). Chemosphere 66:38–44

    Article  CAS  PubMed  Google Scholar 

  48. Pérez-Esteban J, Escolástico C, Ruiz-Fernández J, Masaguer A, Moliner A (2013) Bioavailability and extraction of heavy metals from contaminated soil by Atriplex halimus. Environ Exp Bot 88:53–59

    Article  Google Scholar 

  49. Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  PubMed  Google Scholar 

  50. Richau KH, Schat H (2009) Intraspecific variation of Ni and Zn accumulation and tolerance in the hyperaccumulator Thlaspi caerulescens. Plant Soil 314:253–262

    Article  CAS  Google Scholar 

  51. Kramer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  52. Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14:252–259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded by the European Union LIFE+ project MIPOLARE (LIFE09 ENV/ES/000439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Zornoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zornoza, R. et al. (2016). Suitability of Different Mediterranean Plants for Phytoremediation of Mine Soils Affected with Cadmium. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-41811-7_20

Download citation

Publish with us

Policies and ethics