Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

Operator splitting is a numerical method of computing the solution to a differential equation. The splitting method separates the original equation into two parts over a time step, separately computes the solution to each part, and then combines the two separate solutions to form a solution to the original equation. A canonical example is splitting of diffusion terms and convection terms in a convection-diffusion partial differential equation. Related applications of splitting for reaction-diffusion partial differential equations in chemistry and in biology are emphasized here. The splitting idea generalizes in a natural way to equations with more than two operators. In all cases, the computational advantage is that it is faster to compute the solution of the split terms separately, than to compute the solution directly when they are treated together. However, this comes at the cost of an error introduced by the splitting, so strategies have been devised to control this error. This chapter introduces splitting methods and surveys recent developments in the area. An interesting perspective on absorbing boundary conditions in wave equations comes via Toeplitz-plus-Hankel splitting. One recent development, balanced splitting, deserves and receives special mention: it is a new splitting method that correctly captures steady state behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An exercise in Golub and Van Loan [22] shows that \([\boldsymbol{A},\boldsymbol{B}] =\boldsymbol{ 0}\) if and only if \(e^{h(\boldsymbol{A}+\boldsymbol{B})} = e^{h\boldsymbol{A}}e^{h\boldsymbol{B}}\) for all h.

  2. 2.

    See, for example, Rauch’s notes on Turing instability [48].

  3. 3.

    Here we assume \(\boldsymbol{A}\) and \(\boldsymbol{B}\) are invertible. The non-invertible case is treated by the variation-of-parameters formula [58].

References

  1. Ascher, U., Ruuth, S., Wetton, B.: Implicit-explicit methods for time-dependent partial differential equations. SIAM Journal on Numerical Analysis (1995)

    Google Scholar 

  2. Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis. Springer (2007)

    Google Scholar 

  3. Blanes, S., Casas, F., Chartier, P., Murua, A.: Optimized high-order splitting methods for some classes of parabolic equations. Math. Comput. (2012)

    MATH  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning pp. 1–122 (2011)

    Google Scholar 

  5. Butcher, J.: Numerical Methods for Ordinary Differential Equations. Wiley (2003)

    Google Scholar 

  6. Cao, Y., Gillespie, D.T., Petzold, L.R.: The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122, 014,116–1–18 (2005)

    Google Scholar 

  7. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comp. pp. 745–762 (1968)

    Google Scholar 

  8. Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. pp. 33–53 (1956)

    Google Scholar 

  9. Dahlquist, G.: A special stability problem for linear multistep methods. BIT Numerical Mathematics pp. 27–43 (1963)

    Google Scholar 

  10. Dahlquist, G., Björk, A.: Numerical Methods. Prentice-Hall (1974)

    Google Scholar 

  11. Daubechies, I.: Ten Lectures on Wavelets. SIAM (1992)

    Google Scholar 

  12. Descombes, S.: Convergence of a splitting method of high order for reaction-diffusion systems. Mathematics of Computation 70 (236), 1481–1501 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Descombes, S., Schatzman, M.: Directions alternées d’ordre élevé en réaction-diffusion. Comptes Rendus de l’Académie des Sciences. Série 1, Mathématique 321 (11), 1521–1524 (1995)

    Google Scholar 

  14. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. pp. 421–439 (1956)

    Google Scholar 

  15. E, W., Liu, D., Vanden-Eijnden, E.: Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J. Chem. Phys. 123 (19), 194,107 (2005)

    Google Scholar 

  16. Engblom, S.: Strong convergence for split-step methods in stochastic jump kinetics (2014). http://arxiv.org/abs/1412.6292

    MATH  Google Scholar 

  17. Engquist, B., Majda, A.: Absorbing boundary conditions for numerical simulation of waves. Proc Natl Acad Sci U S A 74, 765–1766 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ferm, L., Lötstedt, P.: Numerical method for coupling the macro and meso scales in stochastic chemical kinetics. BIT Numerical Mathematics 47 (4), 735–762 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ferm, L., Lötstedt, P., Hellander, A.: A hierarchy of approximations of the master equation scaled by a size parameter. J. Sci. Comput. 34, 127–151 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Giles, M.: Multi-level Monte Carlo path simulation. Operations Research 56, 607–617 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Goldstein, T., Osher, S.: The Split Bregman Method for L1-Regularized Problems. SIAM Journal on Imaging Sciences 2 (2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins (1996)

    Google Scholar 

  23. Haberman, R.: Applied Partial Differential Equations. Prentice Hall (2013)

    Google Scholar 

  24. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations. Springer (2006)

    Google Scholar 

  25. Hellander, A., Hellander, S., Lötstedt, P.: Coupled mesoscopic and microscopic simulation of stochastic reaction-diffusion processes in mixed dimensions. Multiscale Model. Simul. pp. 585–611 (2012)

    Google Scholar 

  26. Hellander, A., Lawson, M., Drawert, B., Petzold, L.: Local error estimates for adaptive simulation of the reaction-diffusion master equation via operator splitting. J. Comput. Phys (2014)

    MATH  Google Scholar 

  27. Higdon, R.: Numerical Absorbing Boundary Conditions for the Wave Equation. Mathematics of Computation 49, 65–90 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  28. Higham, N.J.: Functions of Matrices. SIAM (2008)

    Google Scholar 

  29. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press (2013)

    Google Scholar 

  30. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer (2003)

    Google Scholar 

  31. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press (1996)

    Google Scholar 

  32. Jahnke, T., Altintan, D.: Efficient simulation of discrete stochastic reaction systems with a splitting method. BIT 50, 797–822 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lax, P.D., Richtmyer, R.D.: Survey of the stability of linear finite difference equations. Comm. Pure Appl. Math pp. 267–293 (1956)

    Google Scholar 

  34. Lee, J., Fornberg, B.: A split step approach for the 3-D Maxwell’s equations. J. Comput. Appl. Math. 158, 485–505 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Loh, P.R., Oskooi, A.F., Ibanescu, M., Skorobogatiy, M., Johnson, S.G.: Fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures. Phys. Rev. E 79, 065,601 (2009). DOI 10.1103/PhysRevE.79.065601. URL http://link.aps.org/doi/10.1103/PhysRevE.79.065601

  36. Lubich, C., Oseledets, I.: A projector-splitting integrator for dynamical low-rank approximation. BIT Numerical Mathematics 54, 171–188 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  37. MacNamara, S., Burrage, K., Sidje, R.: Application of the Strang Splitting to the chemical master equation for simulating biochemical kinetics. The International Journal of Computational Science 2, 402–421 (2008)

    MATH  Google Scholar 

  38. MacNamara, S., Burrage, K., Sidje, R.: Multiscale Modeling of Chemical Kinetics via the Master Equation. SIAM Multiscale Model. & Sim. 6 (4), 1146–1168 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Maini, P.K., Baker, R.E., Chuong, C.M.: The Turing model comes of molecular age. Science 314, 1397–1398 (2006)

    Article  Google Scholar 

  40. Marchuk, G.I.: Some application of splitting-up methods to the solution of mathematical physics problems. Aplikace Matematiky pp. 103–132 (1968)

    Google Scholar 

  41. Marchuk, G.I.: Splitting and alternating direction methods. In: P. Ciarlet, J. Lions (eds.) Handbook of Numerical Analysis, vol. 1, pp. 197–462. North-Holland, Amsterdam (1990)

    Google Scholar 

  42. McLachlan, R., Reinout, G., Quispel, W.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  43. Moler, C., Van Loan, C.: Nineteen Dubious Ways to Compute the Exponential of a Matrix, 25 Years Later. SIAM Review 45(1), 3–49 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  44. Murray, J.: Mathematical Biology: An Introduction. New York: Springer (2002)

    MATH  Google Scholar 

  45. Ninomiya, S., Victoir, N.: Weak approximation of stochastic differential equations and application to derivative pricing. Applied Mathematical Finance 15 (2008)

    Google Scholar 

  46. Pavliotis, G., Stuart, A.: Multiscale Methods: Averaging and Homogenization. Springer (2008)

    Google Scholar 

  47. Peaceman, D.W., Rachford Jr., H.H.: The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial and Applied Mathematics (1955)

    Google Scholar 

  48. Rauch, J.: The Turing Instability. URL: http://www.math.lsa.umich.edu/~rauch/

  49. Reddy, S.C., Trefethen, L.N.: Pseudospectra of the convection-diffusion operator. SIAM J. Appl. Math (1994)

    MATH  Google Scholar 

  50. Ropp, D., Shadid, J.: Stability of operator splitting methods for systems with indefinite operators: Reaction-diffusion systems. Journal of Computational Physics 203, 449–466 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  51. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  52. Schatzman, M.: Toward non commutative numerical analysis: High order integration in time. Journal of Scientific Computing 17, 99–116 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  53. Speth, R., Green, W., MacNamara, S., Strang, G.: Balanced splitting and rebalanced splitting. SIAM Journal of Numerical Analysis 51 (6), 3084–3105 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  54. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (2), 506–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  55. Strang, G.: Computational Science and Engineering. Wellesley-Cambridge Press (2007)

    Google Scholar 

  56. Strang, G.: Introduction to Linear Algebra. Wellesley-Cambridge Press (2009)

    Google Scholar 

  57. Strang, G.: Essays in Linear Algebra. Wellesley-Cambridge Press (2012)

    Google Scholar 

  58. Strang, G.: Differential Equations and Linear Algebra. Wellesley-Cambridge Press (2014)

    Google Scholar 

  59. Strang, G., MacNamara, S.: Functions of difference matrices are Toeplitz plus Hankel. SIAM Review 56 (3), 525–546 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  60. Trefethen, L.: Numerical analysis. In: T. Gowers, J. Barrow-Green, I. Leader (eds.) Princeton Companion to Mathematics, pp. 604–615. Princeton University Press (2008)

    Google Scholar 

  61. Trefethen, L., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press (2005)

    Google Scholar 

  62. Usadi, A., Dawson, C.: 50 years of ADI methods: Celebrating the contributions of Jim Douglas, Don Peaceman, and Henry Rachford. SIAM News 39 (2006)

    Google Scholar 

  63. Wanner, G.: Dahlquist’s classical papers on stability theory. BIT Numerical Mathematics 46, 671–683 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  64. Widom, H.: Toeplitz matrices. In: I.I. Hirschman (ed.) Studies in Real and Complex Analysis. Prentice-Hall (1965)

    Google Scholar 

  65. Yoshida, H.: Construction of higher order symplectic integrators. Phys. Lett. A. 150, 262–268 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shev MacNamara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

MacNamara, S., Strang, G. (2016). Operator Splitting. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_3

Download citation

Publish with us

Policies and ethics