Skip to main content

Genome-Wide Mapping of Nucleosome Position and Histone Code Polymorphisms in Yeast

  • Chapter
  • First Online:
  • 2780 Accesses

Abstract

Nucleosomes are the building blocks of chromatin and control the physical access of regulatory proteins to DNA either directly or through epigenetic changes. Its positioning across the genome leaves a significant impact on the DNA dependent processes, particularly on gene regulation. Though they form structural repeating units of chromatin they differ from each other by DNA/histone covalent modifications establishing diversity in natural populations. Such differences include DNA methylation and histone post translational modifications occurring naturally or by the influence of environment. DNA methylation and histone post translational modifications interact with DNA resulting in gene expression level changes without altering the DNA sequences and show high degree of variation among individuals. Therefore, precise mapping of nucleosome positioning across the genome is essential to understand the genome regulation. Nucleosome positions and histone borne polymorphism are usually detected by MNase-Seq and ChIP-CHIP/ChIP-Seq techniques, respectively. Various computational software are put forth to analyze the data and create high resolution maps, which would offer precise knowledge about nucleosome positioning and genomic locations associated with histone tail modifications. This chapter describes genome level mapping of nucleosome positions and histone code polymorphisms in yeast Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abraham AL, Nagarajan M, Veyrieras JB et al (2012) Genetic modifiers of chromatin acetylation antagonize the reprogramming of epi-polymorphisms. PLoS Genet 8(9): e1002958.

    Google Scholar 

  2. Alharbi BA, Alshammari TH, Felton NL (2014) nuMap: a web platform for accurate prediction of nucleosome positioning. Genomics Proteomics Bioinformatics 12(5): 249–253

    Google Scholar 

  3. Becker J, Yau C, Hancock JM, Holmes CC (2013) NucleoFinder: a statistical approach for the detection of nucleosome positions. Bioinformatics 29(6): 711–6

    Google Scholar 

  4. Bell O, Tiwari VK, Thoma NH et al (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12(8): 554–564.

    Google Scholar 

  5. Chen K, Xi Y, Pan X, Li Z, Kaestner K, Tyler J, Dent S, He X, Li W (2013) DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res 23(2): 341–351

    Google Scholar 

  6. Chen W, Liu Y, Zhu S, Green CD, et al (2014) Improved nucleosome-positioning algorithm iNPS for accurate nucleosome positioning from sequencing data. Nat. Commun 5: 4909

    Google Scholar 

  7. Chen W, Lin H, Feng P-M, et al (2012) iNuc-PhysChem: A Sequence-Based Predictor for Identifying Nucleosomes via Physicochemical Properties. PLoS ONE 7(10): e47843.

    Google Scholar 

  8. Filleton F, Chuffart F, Nagarajan M et al (2015) The complex pattern of epigenomic variation between natural yeast strains at single-nucleosome resolution. Epigenetics & Chromatin 8: 26

    Google Scholar 

  9. Furey TS (2012) ChIP-seq and Beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13(12): 840–852.

    Google Scholar 

  10. Gabdank I, Barash D, Trifonov EN (2010) FineStr: a web server for single-base-resolution nucleosome positioning. Bioinformatics 26 (6): 845–846.

    Google Scholar 

  11. Simon-Pierre Guay SP, Cécilia Légaré C, Houde A-A et al (2014) Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men. Clinical Epigenetics 6:14

    Google Scholar 

  12. Guertin MJ, Lis JT (2013) Mechanisms by which transcription factors gain access to target sequence elements in chromatin. Curr Opin Genet Dev 23(2): 116–123.

    Google Scholar 

  13. Guo SH, Deng EZ, Xu LQ, et al (2014) iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics 30 (11): 1522–1529.

    Google Scholar 

  14. Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10(3): 161–172.

    Google Scholar 

  15. Kaplan N, Moore IK, Mittendorf-Fondufe Y et al (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458(7236): 362–366.

    Google Scholar 

  16. Kelly TK, Liu Y, Lay FD et al (2012) Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res 22(12): 2497–2506.

    Google Scholar 

  17. Lee W, Tillo D, Bray N et al (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39(10): 1235–1244.

    Google Scholar 

  18. Lieleg C, Ketterer P, Nuebler J et al (2015) Nucleosome spacing generated by ISWI and CHD1 remodelers is constant regardless of nucleosome density. Mol Cell Biol 35(9): 1588–1605.

    Google Scholar 

  19. Liu CL, Kaplan T, Kim M et al (2005) Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3(10): e328.

    Google Scholar 

  20. Mavrich TN, Jiang C, Loshikhes IP et al (2008) Nucleosome organization in the Drosophila genome. Nature 453(7193): 358–362.

    Google Scholar 

  21. Nagarajan M, Veyrieras J-B, Dieuleveult Md et al (2010) Natural single-nucleosome epi-polymorphisms in yeast. PLoS Genet 6(4): e1000913.

    Google Scholar 

  22. Peckham HE, Thurman RE, Fu Y et al (2007) Nucleosome positioning signals in genomic DNA. Genome Res 17(8): 1170–1177.

    Google Scholar 

  23. Polishko A Ponts N, Le Roch KG (2012) NOrMAL: accurate nucleosome positioning using a modified Gaussian mixture model. Bioinformatics 28 (12): i242-i249.

    Google Scholar 

  24. Quintales L, Vázquez E, Antequera F (2015) Comparative analysis of methods for genome-wide nucleosome cartography. Brief Bioinform 16(4): 576–587.

    Google Scholar 

  25. Ramachandran S, Zentner GE, Henikoff S (2015) Asymmetric nucleosomes flank promoters in the budding yeast genome. Genome Res 25(3): 381–390.

    Google Scholar 

  26. Rando OJ, Chang HY (2009) Genome-wide views of chromatin structure. Annu Rev Biochem 78(1): 245–271

    Google Scholar 

  27. Rivera CM and Ren B (2013) Mapping Human Epigenomes. Cell 155(1): 39–55.

    Google Scholar 

  28. Rizzo JM, Bard JE, Buck MJ (2012) Standardized collection of MNase-seq experiments enables unbiased dataset comparisons. BMC Mole Bio 13(1): 15.

    Google Scholar 

  29. Schep AN, Buenrostro JD, Denny SK et al (2015) Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res 25(11): 1757–1770.

    Google Scholar 

  30. Schones DE, Cui K, Cuddapah S et al (2008) Dynamic regulation of nucleosome positioning in the human Genome. Cell 132(5): 887–898.

    Google Scholar 

  31. Stolz RC, Bishop TC. (2010) ICM Web: the interactive chromatin modeling web server. Nucl Acids Res 38 (2): W254-W261.

    Google Scholar 

  32. Valouev A, Ichikawa J, Tonthat T et al (2008) A high-resolution nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18(7): 1051–63.

    Google Scholar 

  33. Weiner A, Hughes A, Yassour M et al (2010) High- resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20(1): 90–100.

    Google Scholar 

  34. Yassour M, Kaplan T, Jaimovich A et al (2008) Nucleosome positioning from tiling microarray data. Bioinformatics 24(13): i139-i146.

    Google Scholar 

  35. Yuan G-C, Liu YJ, Dion MF et al (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309(5734): 626–630.

    Google Scholar 

  36. Zhang X, Robertson G, Woo S, et al (2012) Probabilistic Inference for Nucleosome Positioning with MNase-Based or Sonicated Short-Read Data. PLoS ONE 7(2): e32095.

    Google Scholar 

  37. Zentner GE and Henikoff S (2012) Surveying the epigenomic landscape, one base at a time. Genome Biology 13(10): 250.

    Google Scholar 

Download references

Acknowledgments

The first author is grateful to Science and Engineering Research Board (SERB), Department of Science and technology, Government of India, New Delhi for financial Assistance (SR/S0/AS-84/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muniyandi Nagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nagarajan, M., Prabhu, V.R. (2016). Genome-Wide Mapping of Nucleosome Position and Histone Code Polymorphisms in Yeast. In: Wong, KC. (eds) Big Data Analytics in Genomics. Springer, Cham. https://doi.org/10.1007/978-3-319-41279-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41279-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41278-8

  • Online ISBN: 978-3-319-41279-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics