Skip to main content

Adsorption: Phage Acquisition of Bacteria

  • Living reference work entry
  • First Online:
Bacteriophages

Abstract

To infect, a virion must first encounter a bacterium, where “encounter” essentially is a euphemism for “collision.” That is, a virion must physically touch a target bacterium to enable attachment. Indeed, phage acquisition of a bacterium to infect typically will consist of a combination of virion movement (including but not exclusively via diffusion), virion encounter with a target bacterium, virion reversible attachment to that bacterium, subsequent irreversible attachment, and then phage-genome translocation into a bacterium’s cytoplasm. Many of these concepts often are lumped under the heading of phage adsorption, and in this chapter we review these various aspects of phage adsorption/acquisition of bacteria. As companion chapters covering what happens either following or because of phage adsorption, see also chapters “Phage Infection and Lysis,” “Bacteriophage Ecology,” and “Bacteriophage Pharmacology and Immunology”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abedon ST (1990) The ecology of bacteriophage T4. University of Arizona

    Google Scholar 

  • Abedon ST (2009) Kinetics of phage-mediated biocontrol of bacteria. Foodborne Pathog Dis 6:807–815

    Article  PubMed  Google Scholar 

  • Abedon S (2011) Phage therapy pharmacology: calculating phage dosing. Adv Appl Microbiol 77:1–40

    Article  PubMed  Google Scholar 

  • Abedon ST (2012) Spatial vulnerability: bacterial arrangements, microcolonies, and biofilms as responses to low rather than high phage densities. Viruses 4:663–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2014) Bacteriophages as drugs: the pharmacology of phage therapy. In: Borysowski J, Miedzybrodzki R, Górski A (eds) Phage therapy: current research and applications. Caister Academic Press, Norfolk, pp 69–100

    Google Scholar 

  • Abedon ST (2016) Phage therapy dosing: the problem(s) with multiplicity of infection (MOI). Bacteriophage 6:e1220348

    Article  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2017) Active bacteriophage biocontrol and therapy on sub-millimeter scales towards removal of unwanted bacteria from foods and microbiomes. AIMS Microbiol 3:649–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abedon ST (2018) Phage therapy: various perspectives on how to improve the art. Methods Mol Biol 1734:113–127

    Article  CAS  PubMed  Google Scholar 

  • Abedon ST (2020) Phage therapy: killing titers, multiplicity of infection, adsorption theory, and passive versus active treatments. In: Kurtboke DI, Aminov R (eds) Advances on the applications of bacteriophages. Nova Science Publishers, Hauppauge

    Google Scholar 

  • Abuladze NK, Gingery M, Tsai J, Eiserling FA (1994) Tail length determination in bacteriophage T4. Virology 199:301–310

    Google Scholar 

  • Augustine J, Louis L, Varghese SM, Bhat SG, Kishore A (2013) Isolation and partial characterization of ΦSP-1, a Salmonella specific lytic phage from intestinal content of broiler chicken. J Basic Microbiol 53:111–120

    Article  CAS  PubMed  Google Scholar 

  • Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266

    Article  CAS  PubMed  Google Scholar 

  • Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, Stotland A, Wolkowicz R, Cutting AS, Doran KS, Salamon P, Youle M, Rohwer F (2013) Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A 110:10771–10776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertin A, de Frutos M, Letellier L (2011) Bacteriophage-host interactions leading to genome internalization. Curr Opin Mirobiol 14:492–496

    Article  CAS  Google Scholar 

  • Bhardwaj A, Olia AS, Cingolani G (2014) Architecture of viral genome-delivery molecular machines. Curr Opin Struct Biol 25:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bohm J, Lambert O, Frangakis AS, Letellier L, Baumeister W, Rigaud JL (2001) FhuA-mediated phage genome transfer into liposomes: a cryo-electron tomography study. Curr Biol 11:1168–1175

    Article  CAS  PubMed  Google Scholar 

  • Caldentey J, Bamford DH (1992) The lytic enzyme of the Pseudomonas phage ϕ6. Purification and biochemical characterization. Biochim Biophys Acta 1159:44–50

    Article  CAS  PubMed  Google Scholar 

  • Casjens SR, Molineux IJ (2012) Short noncontractile tail machines: adsorption and DNA delivery by podoviruses. In: Rossman MG, Rao VB (eds) Viral molecular machines. Springer, Berlin, pp 143–179

    Chapter  Google Scholar 

  • Chan BK, Abedon ST (2015) Bacteriophages and their enzymes in biofilm control. Curr Pharm Des 21:85–99

    Article  CAS  PubMed  Google Scholar 

  • Chang CY, Kemp P, Molineux IJ (2010) Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell. Virology 398:176–186

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Rothenberg E (2012) Interaction of bacteriophage λ with its E. coli receptor, LamB. Viruses 4:3162–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conley MP, Wood WB (1975) Bacteriophage T4 whiskers: a rudimentary environment-sensing device. Proc Natl Acad Sci U S A 72:3701–3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cumby N, Reimer K, Mengin-Lecreulx D, Davidson AR, Maxwell KL (2015) The phage tail tape measure protein, an inner membrane protein and a periplasmic chaperone play connected roles in the genome injection process of E. coli phage HK97. Mol Microbiol 96:437–447

    Article  CAS  PubMed  Google Scholar 

  • Cvirkaite-Krupovic V, Poranen MM, Bamford DH (2010) Phospholipids act as secondary receptor during the entry of the enveloped, double-stranded RNA bacteriophage ϕ6. J Gen Virol 91:2116–2120

    Article  CAS  PubMed  Google Scholar 

  • Danis-Wlodarczyk K, Dąbrowska K, Abedon ST (2020) Phage therapy: the pharmacology of antibacterial viruses. In: Coffey A (ed) Exploitation of bacteriophages for biocontrol and therapeutics. Caister Academic Press, Norwich

    Google Scholar 

  • Delbrück M (1946) Bacterial viruses or bacteriophages. Biol Rev 21:30–40

    Article  PubMed  Google Scholar 

  • Dennehy JJ, Friedenberg NA, Yang YW, Turner PE (2006) Bacteriophage migration via nematode vectors: host-parasite-consumer interactions in laboratory microcosms. Appl Environ Microbiol 72:1974–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forterre P (2013) The virocell concept and environmental microbiology. ISME J 7:233–236

    Article  CAS  PubMed  Google Scholar 

  • Gallet R, Kannoly S, Wang IN (2011) Effects of bacteriophage traits on plaque formation. BMC Microbiol 11:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Doval C, van Raaij MJ (2013) Bacteriophage receptor recognition and nucleic acid transfer. Subcell Biochem 68:489–518

    Article  CAS  PubMed  Google Scholar 

  • Geyer H, Himmelspach K, Kwiatkowski B, Schlecht S, Stirm S (1983) Degradation of bacterial surface carbohydrates by virus-associated enzymes. Pure Appl Chem 55:637–653

    Article  CAS  Google Scholar 

  • Goldberg E (1983) Recognition, attachment, and injection. In: Mathews CK, Kutter EM, Mosig G, Berget PB (eds) Bacteriophage T4. American Society for Microbiology, Washington, DC, pp 32–39

    Google Scholar 

  • Grayson P, Molineux IJ (2007) Is phage DNA ‘injected’ into cells – biologists and physicists can agree. Curr Opin Mirobiol 10:401–409

    Article  CAS  Google Scholar 

  • Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol 11:58–68

    Article  CAS  PubMed  Google Scholar 

  • Hathaway LJ, Brugger SD, Morand B, Bangert M, Rotzetter JU, Hauser C, Graber WA, Gore S, Kadioglu A, Muhlemann K (2012) Capsule type of Streptococcus pneumoniae determines growth phenotype. PLoS Pathog 8:e1002574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendrix RW, Duda RL (1992) Bacteriophage lambda PaPa: not the mother of all lambda phages. Science (New York, NY) 258:1145–1148

    Article  CAS  Google Scholar 

  • Henning U, Hashemolhosseini S (1994) Receptor recognition by T-even type coliphages. In: Karam JD, Eiserling FA, Black LW (eds) The molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 291–298

    Google Scholar 

  • Hershey AD, Chase M (1952) Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Margolin W, Molineux IJ, Liu J (2013) The bacteriophage T7 virion undergoes extensive structural remodeling during infection. Science (New York, NY) 339:576–579. https://pubmed.ncbi.nlm.nih.gov/23306440/

  • Hu B, Margolin W, Molineux IJ, Liu J (2015) Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Natl Acad Sci U S A 112:E4919–E4928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes KA, Sutherland IW, Clark J, Jones MV (1998a) Bacteriophage and associated polysaccharide depolymerases-novel tools for study of bacterial biofilms. J Appl Microbiol 85:583–590

    Article  CAS  PubMed  Google Scholar 

  • Hughes KA, Sutherland IW, Jones MV (1998b) Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144:3039–3047

    Article  CAS  PubMed  Google Scholar 

  • Hyman P, Abedon ST (2009) Practical methods for determining phage growth parameters. Methods Mol Biol 501:175–202

    Article  CAS  PubMed  Google Scholar 

  • Igler C, Abedon ST (2019) Commentary: a host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Front Microbiol 10:1171

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanner LC, Kozloff LM (1964) The reaction of indole and T2 bacteriophage. Biochemistry 3:215–223

    Article  CAS  PubMed  Google Scholar 

  • Katsura I (1987) Determination of bacteriophage lambda tail length by a protein ruler. Nature 327:73–75

    Google Scholar 

  • Kemp P, Gupta M, Molineux IJ (2004) Bacteriophage T7 DNA ejection into cells is initiated by an enzyme-like mechanism. Mol Microbiol 53:1251–1265

    Article  CAS  PubMed  Google Scholar 

  • Knobler CM, Gelbart WM (2009) Physical chemistry of DNA viruses. Annu Rev Phys Chem 60:378–383

    Article  CAS  Google Scholar 

  • Koch AL (1960) Encounter efficiency of coliphage-bacterium interaction. Biochim Biophys Acta 39:311–318

    Article  Google Scholar 

  • Kutter E, Kellenberger E, Carlson K, Eddy S, Neitzel J, Messinger L, North J, Guttman B (1994) Effects of bacterial growth conditions and physiology on T4 infection. In: Karam JD, Kutter E, Carlson K, Guttman B (eds) The molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 406–418

    Google Scholar 

  • Lee KL, Hubbard LC, Hern S, Yildiz I, Gratzl M, Steinmetz NF (2013) Shape matters: the diffusion rates of TMV rods and CPMV icosahedrons in a spheroid model of extracellular matrix are distinct. Biomater Sci 1:581

    Article  CAS  Google Scholar 

  • Lupo D, Leptihn S, Nagler G, Haase M, Molineux IJ, Kuhn A (2015) The T7 ejection nanomachine components gp15-gp16 form a spiral ring complex that binds DNA and a lipid membrane. Virology 486:263–271

    Article  CAS  PubMed  Google Scholar 

  • Molineux IJ, Panja D (2013) Popping the cork: mechanisms of phage genome ejection. Nat Rev Microbiol 11:194–204

    Article  CAS  PubMed  Google Scholar 

  • Montag D, Hashemolhosseini S, Henning U (1990) Receptor-recognizing proteins of T-even type bacteriophages. The receptor-recognizing area of proteins 37 of phages T4 TuIa and TuIb. J Mol Biol 216:327–334

    Article  CAS  PubMed  Google Scholar 

  • Moody MF (1973) Sheath of bacteriophage T4. 3. Contraction mechanism deduced from partially contracted sheaths. J Mol Biol 80:613–635

    Article  CAS  PubMed  Google Scholar 

  • Murray AG, Jackson GA (1992) Viral dynamics: a model of the effects of size, shape, motion, and abundance of single-celled planktonic organisms and other particles. Mar Ecol Prog Ser 89:103–116

    Article  Google Scholar 

  • Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J (2016) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100:2141–2151

    Article  CAS  PubMed  Google Scholar 

  • Reche I, D’Orta G, Mladenov N, Winget DM, Suttle CA (2018) Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J 12:1154–1162

    Google Scholar 

  • Romantschuk M, Bamford DH (1985) Function of pili in bacteriophage ϕ6 penetration. J Gen Virol 66:2461–2468

    Article  CAS  PubMed  Google Scholar 

  • Romantschuk M, Olkkonen VM, Bamford DH (1988) The nucleocapsid of bacteriophage ϕ6 penetrates the host cytoplasmic membrane. EMBO J 7:1821–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roos WH, Ivanovska IL, Evilevitch A, Wuite GJ (2007) Viral capsids: mechanical characteristics, genome packaging and delivery mechanisms. Cell Mol Life Sci 64:1484–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russel M, Model P (2006) Filamentous bacteriophages. In: Calendar R, Abedon ST (eds) The bacteriophages. Oxford University Press, Oxford, pp 146–160

    Google Scholar 

  • Saltzman WM, Radomsky ML, Whaley KJ, Cone RA (1994) Antibody diffusion in human cervical mucus. Biophys J 66:508–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz M (1975) Reversible interaction between coliphage lambda and its receptor protein. J Mol Biol 99:185–202

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M (1976) The adsorption of coliphage lambda to its host: effect of variation in the surface density of the receptor and in phage-receptor affinity. J Mol Biol 103:521–536

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Wang I-N (2008) Bacteriophage adsorption rate and optimal lysis time. Genetics 180:471–482

    Article  PubMed  PubMed Central  Google Scholar 

  • Sisler FD (1940) In: University of Maryland (ed) The transmission of bacteriophage by mosquitoes, College Park

    Google Scholar 

  • Skerker JM, Berg HC (2001) Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 98:6901–6904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stent GS (1963) Molecular biology of bacterial viruses. WH Freeman and Co, San Francisco

    Google Scholar 

  • Storms ZJ, Sauvageau D (2015) Modeling tailed bacteriophage adsorption: insight into mechanisms. Virology 485:355–362

    Article  CAS  PubMed  Google Scholar 

  • Storms ZJ, Arsenault E, Sauvageau D, Cooper DG (2010) Bacteriophage adsorption efficiency and its effect on amplification. Bioprocess Biosyst Eng 33:823–831

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW, Hughes KA, Skillman LC, Tait K (2004) The interaction of phage and biofilms. FEMS Microbiol Lett 232:1–6

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson S, Taylor PW (1985) Neuraminidase associated with coliphage E that specifically depolymerizes the Escherichia coli K1 capsular polysaccharide. J Virol 55:374–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trubl G, Hyman P, Roux S, Abedon ST (2020) Coming-of-age characterization of soil viruses: a user’s guide to virus isolation, detection within metagenomes, and viromics. Soil Sys 4:23

    Article  CAS  Google Scholar 

  • van Raaij MJ, Schoehn G, Burda MR, Miller S (2001) Crystal structure of a heat and protease-stable part of the bacteriophage T4 short tail fibre. J Mol Biol 314:1137–1146

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

JJD acknowledges financial support from the National Institutes of Health NIGMS through grant number 1R01GM124446-01. We also appreciate discussions with Ian Molineux and Dennis Bamford about phage infection mechanisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. Abedon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dennehy, J.J., Abedon, S.T. (2020). Adsorption: Phage Acquisition of Bacteria. In: Harper, D., Abedon, S., Burrowes, B., McConville, M. (eds) Bacteriophages. Springer, Cham. https://doi.org/10.1007/978-3-319-40598-8_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40598-8_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40598-8

  • Online ISBN: 978-3-319-40598-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics