Skip to main content

Computational Higher Order Quasi-Monte Carlo Integration

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 163))

Abstract

The efficient construction of higher-order interlaced polynomial lattice rules introduced recently in [Dick et al. SIAM Journal of Numerical Analysis, 52(6):2676–2702, 2014] is considered and the computational performance of these higher-order QMC rules is investigated on a suite of parametric, high-dimensional test integrand functions. After reviewing the principles of their construction by the “fast component-by-component” (CBC) algorithm due to Nuyens and Cools as well as recent theoretical results on their convergence rates from [Dick, J., Kuo, F.Y., Le Gia, Q.T., Nuyens, D., Schwab, C.: Higher order QMC Petrov–Galerkin discretization for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal. 52(6) (2014), pp. 2676–2702], we indicate algorithmic aspects and implementation details of their efficient construction. Instances of higher order QMC quadrature rules are applied to several high-dimensional test integrands which belong to weighted function spaces with weights of product and of SPOD type. Practical considerations that lead to improved quantitative convergence behavior for various classes of test integrands are reported. The use of (analytic or numerical) estimates on the Walsh coefficients of the integrand provide quantitative improvements of the convergence behavior. The sharpness of theoretical, asymptotic bounds on memory usage and operation counts, with respect to the number of QMC points N and to the dimension s of the integration domain is verified experimentally to hold starting with dimension as low as \(s=10\) and with \(N=128\). The efficiency of the proposed algorithms for computation of the generating vectors is investigated for the considered classes of functions in dimensions \(s=10,...,1000\). A pruning procedure for components of the generating vector is proposed and computationally investigated. The use of pruning is shown to yield quantitative improvements in the QMC error, but also to not affect the asymptotic convergence rate, consistent with recent theoretical findings from [Dick, J., Kritzer, P.: On a projection-corrected component-by-component construction. Journal of Complexity (2015) DOI 10.1016/j.jco.2015.08.001].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dick, J.: Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high-dimensional periodic functions. SIAM J. Numer. Anal. 45(5), 2141–2176 (2007) (electronic). doi:10.1137/060658916

    Google Scholar 

  2. Dick, J.: Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46(3), 1519–1553 (2008). doi:10.1137/060666639

    Article  MathSciNet  MATH  Google Scholar 

  3. Dick, J.: The decay of the Walsh coefficients of smooth functions. Bull. Aust. Math. Soc. 80(3), 430–453 (2009). doi:10.1017/S0004972709000392

    Article  MathSciNet  MATH  Google Scholar 

  4. Dick, J.: Random weights, robust lattice rules and the geometry of the cbc\(r\)c algorithm. Numerische Mathematik 122(3), 443–467 (2012). doi:10.1007/s00211-012-0469-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Dick, J., Kritzer, P.: On a projection-corrected component-by-component construction. J. Complex. (2015). doi:10.1016/j.jco.2015.08.001

    Google Scholar 

  6. Dick, J., Kuo, F.Y., Le Gia, Q.T., Nuyens, D., Schwab, C.: Higher order QMC Petrov–Galerkin discretization for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal. 52(6), 2676–2702 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dick, J., Le Gia, Q.T., Schwab, C.: Higher-order quasi-Monte Carlo integration for holomorphic, parametric operator equations. SIAM/ASA J. Uncertain. Quantif. 4(1), 48–79 (2016). doi:10.1137/140985913

    Google Scholar 

  8. Dick, J., Pillichshammer, F.: Digital nets and sequences. Cambridge University Press, Cambridge (2010). doi:10.1017/CBO9780511761188

  9. Gantner, R. N.: Dissertation ETH Zürich (in preparation)

    Google Scholar 

  10. Goda, T.: Good interlaced polynomial lattice rules for numerical integration in weighted Walsh spaces. J. Comput. Appl. Math. 285, 279–294 (2015). doi:10.1016/j.cam.2015.02.041

    Article  MathSciNet  MATH  Google Scholar 

  11. Goda, T., Dick, J.: Construction of interlaced scrambled polynomial lattice rules of arbitrary high order. Found. Comput. Math. (2015). doi:10.1007/s10208-014-9226-8

    MathSciNet  MATH  Google Scholar 

  12. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity 19(3), 301–320 (2003). doi:10.1016/S0885-064X(03)00006-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo methods for high-dimensional integration: the standard (weighted Hilbert space) setting and beyond. ANZIAM J. 53, 1–37 (2011). doi:10.1017/S1446181112000077

    Article  MathSciNet  MATH  Google Scholar 

  14. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992). doi:10.1137/1.9781611970081

  15. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75(254), 903–920 (2006) (electronic). doi:10.1090/S0025-5718-06-01785-6

    Google Scholar 

  16. Nuyens, D., Cools, R.: Fast component-by-component construction, a reprise for different kernels. Monte Carlo and quasi-Monte Carlo methods 2004, pp. 373–387. Springer, Berlin (2006). doi:10.1007/3-540-31186-6_22

  17. Rader, C.: Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE 3(3), 1–2 (1968)

    MathSciNet  Google Scholar 

  18. Sloan, I.H., Kuo, F.Y., Joe, S.: Constructing randomly shifted lattice rules in weighted Sobolev spaces. SIAM J. Numer. Anal. 40(5), 1650–1665 (2002). doi:10.1137/S0036142901393942

    Article  MathSciNet  MATH  Google Scholar 

  19. Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math. Comp. 71(237), 263–273 (2002). doi:10.1090/S0025-5718-01-01342-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Yoshiki, T.: Bounds on Walsh coefficients by dyadic difference and a new Koksma- Hlawka type inequality for Quasi-Monte Carlo integration (2015)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Swiss National Science Foundation (SNF) under project number SNF149819 and by the European Research Council (ERC) under FP7 Grant AdG247277. Work of CS was performed in part while CS visited ICERM / Brown University in September 2014; the excellent ICERM working environment is warmly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert N. Gantner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Gantner, R.N., Schwab, C. (2016). Computational Higher Order Quasi-Monte Carlo Integration. In: Cools, R., Nuyens, D. (eds) Monte Carlo and Quasi-Monte Carlo Methods. Springer Proceedings in Mathematics & Statistics, vol 163. Springer, Cham. https://doi.org/10.1007/978-3-319-33507-0_12

Download citation

Publish with us

Policies and ethics