Skip to main content

Alternation of Generations in Plants and Algae

  • Living reference work entry
  • First Online:

Abstract

Photosynthetic organisms are found in most of the branches of the eukaryotic tree of life, and these organisms have diverse life cycles. There has been a tendency toward dominance of the diploid phase of the life cycle in the land plant lineage, and recent analyses suggest a similar trend in the brown algae. A number of hypotheses have been proposed to explain the evolutionary stability of different types of life cycle, and in some cases these hypotheses are supported by empirical studies. Molecular analyses are elucidating the regulatory molecules that control life cycle progression and are providing insights into the developmental pathways associated with the construction of each generation of the life cycle.

This is a preview of subscription content, log in via an institution.

References

  • Bell G (1997) The evolution of the life cycle of brown seaweeds. Biol J Linn Soc 60:21–38

    Article  Google Scholar 

  • Bowman JL, Sakakibara K, Furumizu C, Dierschke T (2016) Evolution in the cycles of life. Annu Rev Genet 50:133–154

    Google Scholar 

  • Cock JM, Godfroy O, Macaisne N et al (2013) Evolution and regulation of complex life cycles: a brown algal perspective. Curr Opin Plant Biol 17:1–6

    Article  PubMed  Google Scholar 

  • Coelho S, Peters AF, Charrier B et al (2007) Complex life cycles of multicellular eukaryotes: new approaches based on the use of model organisms. Gene 406:152–170

    Article  CAS  PubMed  Google Scholar 

  • Frada M, Probert I, Allen MJ et al (2008) The “Cheshire cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proc Natl Acad Sci USA 105:15944–15949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodenough U, Heitman J (2014) Origins of eukaryotic sexual reproduction. Cold Spring Harb Perspect Biol 6:a016154

    Google Scholar 

  • Horst NA, Katz A, Pereman I et al (2016) A single homeobox gene triggers phase transition, embryogenesis and asexual reproduction. Nat Plants 2:15209

    Article  CAS  PubMed  Google Scholar 

  • Hull CM, Boily M-J, Heitman J (2005) Sex-specific homeodomain proteins Sxi1alpha and Sxi2a coordinately regulate sexual development in Cryptococcus neoformans. Eukaryot Cell 4:526–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John DM (1994) Alternation of generations in algae: its complexity, maintenance and evolution. Biol Rev 69:275–291

    Article  Google Scholar 

  • Kawai H, Hanyuda T, Draisma SGA et al (2015) Molecular phylogeny of two unusual brown algae, Phaeostrophion irregulare and Platysiphon glacialis, proposal of the Stschapoviales ord. nov. and Platysiphonaceae fam. nov., and a re-examination of divergence times for brown algal orders. J Phycol 51:918–928

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Lin H, Joo S, Goodenough U (2008) Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell 133:829–840

    Article  CAS  PubMed  Google Scholar 

  • Leliaert F, Smith DR, Moreau H et al (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46

    Article  Google Scholar 

  • Okano Y, Aono N, Hiwatashi Y et al (2009) A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution. Proc Natl Acad Sci USA 106:16321–16326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto SP, Gerstein AC (2008) The evolution of haploidy and diploidy. Curr Biol 18:R1121–R1124

    Article  CAS  PubMed  Google Scholar 

  • Pereman I, Mosquna A, Katz A et al (2016) The Polycomb group protein CLF emerges as a specific tri-methylase of H3K27 regulating gene expression and development in Physcomitrella patens. Biochim Biophys Acta 1859:860–870

    Article  CAS  PubMed  Google Scholar 

  • Pires ND, Dolan L (2012) Morphological evolution in land plants: new designs with old genes. Philos Trans R Soc Lond Ser B Biol Sci 367:508–518

    Article  CAS  Google Scholar 

  • Sakakibara K, Ando S, Yip HK et al (2013) KNOX2 genes regulate the haploid-to-diploid morphological transition in land plants. Science 339:1067–1070

    Article  CAS  PubMed  Google Scholar 

  • Silberfeld T, Leigh JW, Verbruggen H et al (2010) A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): investigating the evolutionary nature of the “brown algal crown radiation”. Mol Phylogenet Evol 56:659–674

    Article  CAS  PubMed  Google Scholar 

  • Szovenyi P, Ricca M, Hock Z et al (2013) Selection is no more efficient in haploid than in diploid life stages of an angiosperm and a moss. Mol Biol Evol 30:1929–1939

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mark Cock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Bourdareau, S., Mignerot, L., Heesch, S., Peters, A.F., Coelho, S.M., Cock, J.M. (2017). Alternation of Generations in Plants and Algae. In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-33038-9_58-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33038-9_58-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33038-9

  • Online ISBN: 978-3-319-33038-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics