Skip to main content

MBotCS: A Mobile Botnet Detection System Based on Machine Learning

  • Conference paper
  • First Online:
Risks and Security of Internet and Systems (CRiSIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9572))

Included in the following conference series:

Abstract

As the use of mobile devices spreads dramatically, hackers have started making use of mobile botnets to steal user information or perform other malicious attacks. To address this problem, in this paper we propose a mobile botnet detection system, called MBotCS. MBotCS can detect mobile device traffic indicative of the presence of a mobile botnet based on prior training using machine learning techniques. Our approach has been evaluated using real mobile device traffic captured from Android mobile devices, running normal apps and mobile botnets. In the evaluation, we investigated the use of 5 machine learning classifier algorithms and a group of machine learning box algorithms with different validation schemes. We have also evaluated the effect of our approach with respect to its effect on the overall performance and battery consumption of mobile devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Stream index is a number applied to each TCP conversation seen in the traffic file.

References

  1. Alpcan, T., Bauckhage, C., Schmidt, A.-D.: A probabilistic diffusion scheme for anomaly detection on smartphones. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 31–46. Springer, Heidelberg (2010)

    Google Scholar 

  2. Batyuk, L., Herpich, M.: Using static analysis for automatic assessment and mitigation of unwanted and malicious activities within Android applications. In: 2011 6th International Conference Malicious Unwanted Software, pp. 66–72 (2011)

    Google Scholar 

  3. Bhargava, D., et al.: Decision tree analysis on j48 algorithm for data mining. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(6), 1114–1119 (2013)

    MathSciNet  Google Scholar 

  4. Bläsing, T., et al.: An android application sandbox system for suspicious software detection. In: Proceedings of the 5th IEEE International Conference on Malicious and Unwanted Software, pp. 55–62 (2010)

    Google Scholar 

  5. Boland, M.V., Murphy, R.F.: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of HeLa cells. Bioinformatics 17(12), 1213–1223 (2001)

    Article  Google Scholar 

  6. Braun, L., Münz, G., Carle, G.: Packet sampling for worm and botnet detection in TCP connections. In: Proceedings of the 2010 IEEE/IFIP Network Operations and Management Symposium, NOMS 2010, pp. 264–271 (2010)

    Google Scholar 

  7. Chappell, L.A., Combs, G.: Wireshark 101: Essential Skills for Network Analysis. Protocol Analysis Institute, Chappell University, San Jose (2013)

    Google Scholar 

  8. Funk C., Garnaeva M.: Kaspersky security bulletin (2013). https://securelist.com/analysis/kaspersky-security-bulletin/58265/kaspersky-security-bulletin-2013-overall-statistics-for-2013

  9. Cisco: Cisco visual networking index: Global mobile data traffic forecast update, 2014–2019. Tech. report (2015). http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html

  10. Cunningham, P., Delany, S.J.: k-nearest neighbour classifiers. In: Multiple Classifier Systems, pp. 1–17 (2007)

    Google Scholar 

  11. Eslahi, M., Salleh, R., Anuar, N.B.: MoBots: a new generation of botnets on mobile devices and networks. In: 2012 International Symposium on Computer Applications and Industrial Electronics, pp. 262–266 (2012)

    Google Scholar 

  12. Feizollah, A., et al.: A study of machine learning classifiers for anomaly-based mobile botnet detection. Malays. J. Comput. Sci. 26(4), 251–265 (2014)

    Google Scholar 

  13. Google: Google IP address ranges. https://support.google.com/a/answer/60764?hl=en. Accessed June 2015

  14. Google: Dashboards. https://developer.android.com/about/dashboards/index.html. Accessed June 2015

  15. Hall, M., et al.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsletter 11(1), 10–18 (2009)

    Article  Google Scholar 

  16. Kalige, E., Burkey, D.: A case study of Eurograbber: How 36 million euros was stolen via malware. Versafe (White paper) (2012)

    Google Scholar 

  17. Porras, P., Saïdi, H., Yegneswaran, V.: An analysis of the iKee.B iPhone Botnet. In: Schmidt, A.U., Russello, G., Lioy, A., Prasad, N.R., Lian, S. (eds.) MobiSec 2010. LNICST, vol. 47, pp. 141–152. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Reina, A., Fattori, A., Cavallaro, L.: A system call-centric analysis and stimulation technique to automatically reconstruct android malware behaviors. In: EuroSec, April 2013

    Google Scholar 

  19. Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, no. 22, pp. 41–46 (2001)

    Google Scholar 

  20. Schmidt, A.D., et al.: Static analysis of executables for collaborative malware detection on android. In: IEEE International Conference on Communications 2009, pp. 1–5 (2009)

    Google Scholar 

  21. Schmidt, A.D., et al.: Monitoring smartphones for anomaly detection. Mob. Netw. Appl. 14(1), 92–106 (2009)

    Article  Google Scholar 

  22. Seo, S.H., Gupta, A., Sallam, A.M., Bertino, E., Yim, K.: Detecting mobile malware threats to homeland security through static analysis. J. Netw. Comput. Appl. 38, 43–53 (2014)

    Article  Google Scholar 

  23. Shabtai, A., Kanonov, U., Elovici, Y.: Detection, alert and response to malicious behavior in mobile devices: knowledge-based approach. In: Kirda, E., Jha, S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 357–358. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Shabtai, A., et al.: “Andromaly”: a behavioral malware detection framework for android devices. J. Intell. Inf. Syst. 38(1), 161–190 (2012)

    Article  Google Scholar 

  25. Shahar, Y.: A framework for knowledge-based temporal abstraction. Artif. Intell. 90(1), 79–133 (1997)

    Article  MATH  Google Scholar 

  26. Spreitzenbarth, M., et al.: Mobile-sandbox: having a deeper look into android applications. In: 28th Annual ACM Symposium on Applied Computing, pp. 1808–1815. ACM (2013)

    Google Scholar 

  27. Strazzere, T.: The new not compatible: Sophisticated and evasive threat harbors the potential to compromise enterprise networks. https://blog.lookout.com/blog/2014/11/19/notcompatible/. Accessed June 2015

  28. Tanner, G.: Gsam battery monitor. https://play.google.com/store/apps/details?id=com.gsamlabs.bbm&hl=en_GB. Accessed June 2015

  29. Taosoftware: tpacketcapture. https://play.google.com/store/apps/details?id=jp.co.taosoftware.android.packetcapture. Accessed June 2015

  30. Team, B.R., et al.: Sanddroid: an APK analysis sandbox. Xi’an jiaotong university (2014). http://sanddroid.xjtu.edu.cn/. Accessed June 2015

  31. Vural, I., Venter, H.: Mobile botnet detection using network forensics. In: Berre, A.J., Gómez-Pérez, A., Tutschku, K., Fensel, D. (eds.) FIS 2010. LNCS, vol. 6369, pp. 57–67. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  32. Vural, I., Venter, H.S.: Combating mobile spam through botnet detection using artificial immune systems. J. UCS 18(6), 750–774 (2012)

    Google Scholar 

  33. Wireshark: The wireshark network analyzer 1.12.2. https://www.wireshark.org/docs/man-pages/tshark.html. Accessed June 2015

  34. Xiang, C., et al.: Andbot: towards advanced mobile botnets. In: 4th USENIX Conference on Large-Scale Exploits and Emergent Threats. USENIX Association (2011)

    Google Scholar 

  35. Zhou, W., et al.: Fast, scalable detection of “piggybacked” mobile applications. In: 3rd ACM Conference on Data and application security and privacy - CODASPY 2013, p. 185 (2013). http://dl.acm.org/citation.cfm?doid=2435349.2435377

  36. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution. In: IEEE Symposium on Security and Privacy (SP 2012), pp. 95–109. IEEE (2012)

    Google Scholar 

  37. Zorz, Z.: Android trojan with botnet capabilities found in the wild. http://www.net-security.org/malware_news.php?id=1577. Accessed June 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Meng, X., Spanoudakis, G. (2016). MBotCS: A Mobile Botnet Detection System Based on Machine Learning. In: Lambrinoudakis, C., Gabillon, A. (eds) Risks and Security of Internet and Systems. CRiSIS 2015. Lecture Notes in Computer Science(), vol 9572. Springer, Cham. https://doi.org/10.1007/978-3-319-31811-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31811-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31810-3

  • Online ISBN: 978-3-319-31811-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics