Skip to main content

Anticipatory Artificial Intelligence

  • Living reference work entry
  • First Online:
Book cover Handbook of Anticipation

Abstract

Anticipation occupies a special role in Artificial Intelligence (AI), not only because replicating human anticipatory processes is naturally a part of the aim to replicate human intelligence, but also because the design, implementation, and evaluation of AI systems involves a mix of several, interdependent anticipatory processes, some of which are carried out by human designers and users, and others by the AI system. This chapter provides an introduction to key AI technologies, investigates to what extent they involve anticipatory processes, and explores the consequences of such anticipation on the predictability of AI systems for humans. Our analysis suggests that the relationship between human and AI anticipation is complementary - the more pronounced the anticipatory capabilities of the AI system, the harder it may be for humans to anticipate their behaviour. If this turns out to be correct, building safe, responsible, and ethically sound AI will require developing more understandable and explainable AI methods in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469–483.

    Article  Google Scholar 

  • Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.

    Google Scholar 

  • Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural assumptions and computational leverage. Journal of Artificial Intelligence Research, 11, 1–94.

    Google Scholar 

  • Brachman, R. J., Levesque, H. J., & Reiter, R. (1992). Knowledge representation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bratman, M. E. (1987). Intentions, plans and practical reason. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Bratman, M. E., Israel, D. J., & Pollack, M. E. (1988). Plans and resource-bounded practical reasoning. Computational Intelligence, 4(4), 349–355.

    Article  Google Scholar 

  • Brooks, R. A. (1990a). Intelligence without representation. Aritificial Intelligence, 47, 139–159.

    Article  Google Scholar 

  • Brooks, R. A. (1990b). Elephants don’t play chess. Robotics and Autonomous Systems, 6, 3–15.

    Article  Google Scholar 

  • Castelfranchi, C. (1995). Guarantees for autonomy in cognitive agent architecture. In M. J. Wooldridge, N. R. Jennings, (Eds.), Intelligent agents: Proceedings of the first international workshop on agent theories, architectures and languages (ATAL-94) (pp. 56–70). Berlin: Springer.

    Google Scholar 

  • Clark, A., & Chalmers, D. J. (1998). The extended mind. Analysis, 58, 7–19.

    Article  Google Scholar 

  • Cohen, P. R., & Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intelligence, 42, 213–261.

    Article  Google Scholar 

  • Edelkamp, S., & Schroedl, S. (2011). Heuristic search: Theory and applications. Morgan Kaufmann, San Francisco, CA.

    Google Scholar 

  • Ferber, J. (1996). Reactive distributed artificial intelligence: Principles and applications. In G. M. P. O’Hare & N. R. Jennings (Eds.), Foundations of distributed artificial intelligence (pp. 287–314). New York: Wiley.

    Google Scholar 

  • Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 2(3–4), 189–208.

    Article  Google Scholar 

  • Floreano, D., & Mattiussi, C. (2008). Bio-inspired artificial intelligence: Theories, methods, and technologies. Cambridge, MA: MIT Press.

    Google Scholar 

  • French, S. (1986). Decision theory: An introduction to the mathematics of rationality. New York: Halsted Press.

    Google Scholar 

  • Friedler, S. A., Scheidegger, C., Venkatasubramanian, S. (2016). On the (im)possibility of fairness. CoRR, abs/1609.07236.

    Google Scholar 

  • Gabbay, D. M., Siekmann, J. H., Woods, J., (Eds.). (2014). Handbook of the history of logic, volume 9: Computational logic. North Holland, Waltham, MA: Elsevier.

    Google Scholar 

  • Georgeff, M. P., Pell, B., Pollack, M., Tambe, M., Wooldridge, M. (1999). The belief-desire-intention model of agency. In J. Mu¨ller, M. P. Singh, A. S. Rao, (Eds.), Proceedings of the 5th international workshop on intelligent agents V: Agent theories, architectures, and languages (ATAL-98), vol. 1555 (pp. 1–10). Heidelberg: Springer.

    Google Scholar 

  • Gershenson, C., & Fern’andez, N. (2012). Complexity and information: Measuring emergence, self-organization, and homeostasis at multiple scales. Complexity, 18(2), 29–44.

    Article  Google Scholar 

  • Ghallab, M., Nau, D., Traverso, P. (2004). Automated planning: theory and practice. San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Gunning, D. (2017). Explainable artificial intelligence (xai). Available at: www.cc.gatech.edu/~alanwags/…/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf.

  • Holland, J. H. (1998). Emergence: From chaos to order. New York: Helix Books.

    Google Scholar 

  • Hopcroft, J. E., Ullman, J. D. (1979). Introduction to automata theory, languages and computation. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • desJardins, M., Durfee, E. H., Ortiz, C. L., Jr., & Wolverton, M. (1999). A survey of research in distributed, continual planning. AI Magazine, 20(4), 13–22.

    Google Scholar 

  • Jonker, C.M., Treur, J. (1998). Compositional verification of multi-agent systems: A formal analysis of pro-activeness and reactiveness. In W.P. de Roever, H. Langmaack, A. Pnueli, (Eds.), Proceedings of the international workshop on compositionality (COMPOS-97), lecture notes in artificial intelligence vol. 1536 (pp. 350–380). Springer.

    Google Scholar 

  • Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101(1), 99–134.

    Article  Google Scholar 

  • Koller, D., Friedman, N. (2009). Probabilistic graphical models: Principles and techniques. MIT Press.

    Google Scholar 

  • Louie, A. H. (2010). Robert rosen’s anticipatory systems. Foresight, 12(3), 18–29.

    Article  Google Scholar 

  • Malone, T. W., Laubacher, R., & Dellarocas, C. (2010). The collective intelligence genome. Sloan Management Review, 51(3), 21–31.

    Google Scholar 

  • McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint of artificial intelligence. Machine Intelligence, 4, 463–502.

    Google Scholar 

  • Mitchell, T. (1997). Machine learning. New York: McGraw-Hill.

    Google Scholar 

  • Nickles, M., Rovatsos, M., Weiss, G., (Eds.). (2004). Agents and computational autonomy – Potentials, risks and solutions. Postproceedings of the first international workshop (AUTONOMY 2003), 14 July 2003, Melbourne, vol. 2969 of lecture notes in computer science. Springer, 2004. 275 pages.

    Google Scholar 

  • Ognibene, D., Chinellato, E., Sarabia, M., & Demiris, Y. (2013). Contextual action recognition and target localization with an active allocation of attention on a humanoid robot. Bioinspiration & Biomimetics, 8(3), 035002.

    Article  Google Scholar 

  • Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible inference. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Pearl, J. (2009). Causality. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Poli, R. (2010a). An introduction to the ontology of anticipation. Futures, 42(7), 769–776.

    Article  Google Scholar 

  • Poli, R. (2010b). The many aspects of anticipation. Foresight, 12(3), 7–17.

    Article  Google Scholar 

  • Puterman, M. L. (1994). Markov decision problems. New York: Wiley.

    Book  Google Scholar 

  • Rao, A.S. (1996) AgentSpeak(L): BDI agents speak out in a logical computable language. In W. van der Velde, J. Perram, (Eds.), Agents breaking away: proceedings of the seventh European workshop on modelling autonomous agents in a multi-agent world (MAAMAW-96), lecture notes in artificial intelligence vol. 1038 (pp. 42–55). Springer.

    Google Scholar 

  • Riegler, A. (2001). The role of anticipation in cognition. In D. M. Dubois (Ed.), Computing anticipatory systems, vol. 573 (pp. 534–541). Proceedings of the American Institute of Physics.

    Google Scholar 

  • Rosen, R. (1985). Anticipatory systems: Philosophical, mathematical, and methodological foundations. Oxford: Pergamon Press.

    Google Scholar 

  • Rovatsos, M., & Weiß, G. (2005). Autonomous software. In S. K. Chang (Ed.), Handbook of software engineering and knowledge engineering, Recent advances (Vol. 3, pp. 63–84). River Edge: World Scientific Publishing.

    Chapter  Google Scholar 

  • Russell, S. J., & Norvig, P. (2003). Artificial intelligence. A modern approach (2nd ed.). Upper Saddle River: Pearson Education (Prentice-Hall).

    Google Scholar 

  • Russell, S. J., & Subramanian, D. (1995). Provably bounded-optimal agents. Journal of Artificial Intelligence Research, 2, 595–609.

    Google Scholar 

  • Russell, S. J., & Wefald, E. (1989). Principles of metareasoning. In R. J. Brachman, H. J. Levesque, & R. Reiter (Eds.), KR’89: Principles of knowledge representation and reasoning (pp. 400–411). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Russell, S. J., & Wefald, E. H. (1991a). Do the right thing: Studies in limited rationality. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Russell, S. J., & Wefald, E. H. (1991b). Principles of rationality. Artificial Intelligence, 49(1–3), 361–395.

    Article  Google Scholar 

  • Shoham, Y., & Leyton-Brown, K. (2009). Multiagent systems – Algorithmic, game-theoretic, and logical foundations. New York: Cambridge University Press.

    Google Scholar 

  • Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529(7587), 484–489.

    Article  Google Scholar 

  • Simon, H. A. (1982). Models of bounded rationality: Empirically grounded economic reason. Cambridge, MA: MIT press.

    Google Scholar 

  • Soares, N. (2016). The value learning problem. In Ethics for artificial intelligence workshop at 25th international joint conference on artificial intelligence (IJCAI-2016) New York, 9–15 July, 2016.

    Google Scholar 

  • Steels, L. (1990) Cooperation between distributed agents through self-organization. In Y. Demazeau, J.-P. Mu¨ller, (Eds.), Decentralized A.I. (pp. 175–196). North-Holland.

    Google Scholar 

  • Suchman, L. A. (1987). Plans and situated actions: The problem of human-machine communication. New York: Cambridge University Press.

    Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. An introduction. A Bradford book. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Tumer, K., Wolpert, D. H. (2004). A survey of collectives. In Collectives and the design of complex systems (pp. 1–42). Springer. http://www.springer.com/gb/book/9781461264729.

  • Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Journal of Mathematics, 58, 345–363.

    Article  Google Scholar 

  • Vondrick, C., Pirsiavash, H., Torralba, A. (2016). Anticipating visual representations from unlabeled video. In Proceedings of the 2016 IEEE conference on computer vision and pattern recognition (CVPR 2016) (pp. 98–106), Las Vegas, June 26th to July 1st, 2016.

    Google Scholar 

  • Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292.

    Google Scholar 

  • Wooldridge, M. (2009). An introduction to multiagent systems (2nd ed.). Chichester: Wiley.

    Google Scholar 

  • Wooldridge, M. J., Jennings, N.R. (1995). Agent theories, architectures, and languages: A survey. In M. J. Wooldridge, N.R. Jennings, (Eds.), Intelligent agents, lecture notes in artificial intelligence, vol. 890 (pp. 1–39). Berlin: Springer.

    Google Scholar 

  • Wooldridge, M., Parsons, S. D. (1999). Intention reconsideration reconsidered. In J. P. Mu¨ller, M. P. Singh, A. S. Rao, (Eds.), Intelligent agents V, vol. 1555 of LNAI (pp. 63–80). Springer: Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rovatsos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Rovatsos, M. (2017). Anticipatory Artificial Intelligence. In: Poli, R. (eds) Handbook of Anticipation. Springer, Cham. https://doi.org/10.1007/978-3-319-31737-3_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31737-3_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31737-3

  • Online ISBN: 978-3-319-31737-3

  • eBook Packages: Springer Reference Religion and PhilosophyReference Module Humanities and Social SciencesReference Module Humanities

Publish with us

Policies and ethics