Skip to main content

A Statistically-Based Homogenization Approach for Particle Random Composites as Micropolar Continua

  • Chapter
  • First Online:
Book cover Generalized Continua as Models for Classical and Advanced Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 42))

Abstract

This article is focused on the identification of the size of the representative volume element (RVE) and the estimation of the relevant effective elastic moduli for particulate random composites modeled as micropolar continua. To this aim, a statistically-based scale-dependent multiscale procedure is adopted, resorting to a homogenization approach consistent with a generalized Hill’s type macrohomogeneity condition. At the fine level the material has two phases (inclusions/matrix). Two different cases of inclusions, either stiffer or softer than the matrix, are considered. By increasing the scale factor, between the size of intermediate control volume elements (Statistical Volume Elements, SVEs) and the inclusions size, series of boundary value problems are numerically solved and hierarchies of macroscopic elastic moduli are derived. The constitutive relations obtained are grossly isotropic and are represented in terms of classical bulk, shear and micropolar bending moduli. The “finite size scaling” of these relevant elastic moduli for the two different material contrasts (ratio of inclusion to matrix moduli) is reported. It is shown that regardless the scaling behavior, which depends on the material phase contrast, the RVE size is statistically detected. The results of the performed numerical simulations also highlight the importance of taking into account the spatial randomness of inclusions which intersect the SVEs boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addessi D, De Bellis ML, Sacco E (2015) A micromechanical approach for the cosserat modeling of composites. Meccanica 51(3):569–592

    Google Scholar 

  • Altenbach H, Eremeyev VA (2013) Cosserat media. In: Altenbach H, Eremeyev V (eds) Generalized continua from the theory to engineering application, CISM courses and lectures, vol 541. Springer, Berlin, pp 65–129

    Chapter  Google Scholar 

  • Bouyge F, Jasiuk I, Ostoja-Starzewski M (2001) A micromechanically based couple-stress model of an elastic two-phase composite. Int J Solids Struct 38:1721–1735

    Article  MATH  Google Scholar 

  • De Bellis ML, Addessi D (2011) A Cosserat based multi-scale model for masonry structures. Int J Multiscale Comput Eng 9(5):543–563

    Article  Google Scholar 

  • Eremeyev VA, Lebedev LP, Altenbach H (2012) Foundations of micropolar mechanics. Springer Science and Business Media, Heidelberg

    MATH  Google Scholar 

  • Forest S, Sab K (1998) Cosserat overall modeling of heterogeneous materials. Mech Res Commun 25:449–454

    Article  MathSciNet  MATH  Google Scholar 

  • Forest S, Dendievel R, Canova GR (1999) Estimating the overall properties of heterogeneous cosserat materials. Model Simul Materials Sci Eng 7:829–840

    Article  Google Scholar 

  • Forest S, Pradel F, Sab K (2001) Asymptotic analysis of heterogeneous Cosserat media. Int J Solids Struct 38:4585–4608

    Article  MathSciNet  MATH  Google Scholar 

  • Gitman IM, Askes H, Sluys L (2007) Representative volume: existence and size determination. Eng Fract Mech 74:2518–2534

    Article  Google Scholar 

  • Khisaeva Z, Ostoja-Starzewski M (2006) On the size of RVE in finite elasticity of random composites. J Elast 85:153–173

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Liu Q (2009) A version of Hill’s lemma for Cosserat continuum. Acta Mech Sinica 25:499–506

    Article  MATH  Google Scholar 

  • Onck PR (2002) Cosserat modeling of cellular solids. Comptes Rendus Mec 330:717–722

    Article  MATH  Google Scholar 

  • Ostoja-Starzewski M (2006) Material spatial randomness: from statistical to representative volume element. Prob Eng Mech 21:112–132

    Article  Google Scholar 

  • Ostoja-Starzewski M (2008) Microstructural randomness and scaling in mechanics of materials., CRC series: modern mechanics and mathematicsTaylor & Francis, Boca Raton

    MATH  Google Scholar 

  • Ostoja-Starzewski M (2011) Macrohomogeneity condition in dynamics of micropolar media. Arch Appl Mech 81:899–906

    Article  MATH  Google Scholar 

  • Ostoja-Starzewski M, Du X, Khisaeva Z, Li W (2007) Comparisons of the size of representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures. Int J Multiscale Comput Eng 5:73–82

    Article  Google Scholar 

  • Pau A, Trovalusci P (2012) Block masonry as equivalent micropolar continua: the role of relative rotations. Acta Mech 223(7):1455–1471

    Article  MATH  Google Scholar 

  • Ranganathan S, Ostoja-Starzewski M (2008) Scale-dependent homogenization of inelastic random polycrystals. ASME J Appl Mech 75:1–9

    Article  Google Scholar 

  • Sab K, Nedjar B (2005) Periodization of random media and representative volume element size for linear composites. Comptes rendus de l’Academie des Sciences-Mecanique 333:187–195

    Article  MATH  Google Scholar 

  • Sadowski T, Trovalusci P (2014) Multiscale modeling of complex materials: phenomenological, theoretical and computational aspects. No. 556 in courses and lectures, CISM (International Centre for Mechanical Sciences), Springer, Vienna

    Google Scholar 

  • Terada K, Hori T, Kyoya T, Kikuchi N (2000) Simulation of the multi-scale convergence in computational homogenization approach. Int J Solids Struct 37:2285–2311

    Article  MATH  Google Scholar 

  • Trovalusci P (ed) (2015) Multiscale and multifield modeling and simulation. Materials with internal structure. Springer Tracts in Mechanical Engineering, Springer Int. Publishing, Switzerland, Heidelberg

    Google Scholar 

  • Trovalusci P, Masiani R (1999) Material symmetries of micropolar continua equivalent to lattices. Int J Solids Struct 36(14):2091–2108

    Article  MathSciNet  MATH  Google Scholar 

  • Trovalusci P, Masiani R (2005) A multi-field model for blocky materials based on multiscale description. Int J Solids Struct 42:5778–5794

    Article  MATH  Google Scholar 

  • Trovalusci P, Pau A (2014) Derivation of microstructured continua from lattice systems via principle of virtual works. The case of masonry-like materials as micropolar, second gradient and classical continua. Acta Mech 225(1):157–177

    Article  MathSciNet  MATH  Google Scholar 

  • Trovalusci P, Capecchi D, Ruta G (2009) Genesis of the multiscale approach for materials with microstructure. Arch Appl Mech 79:981–997

    Article  MATH  Google Scholar 

  • Trovalusci P, De Bellis ML, Ostoja-Starzewski M, Murrali A (2014) Particulate random composites homogenized as micropolar materials. Meccanica 49(9):2719–2727

    Article  MathSciNet  Google Scholar 

  • Trovalusci P, Ostoja-Starzewski M, De Bellis ML, Murrali A (2015) Scale-dependent homogenization of random composites as micropolar continua. Eur J Mech A/Solids 49:396–407

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Trovalusci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trovalusci, P., De Bellis, M.L., Ostoja-Starzewski, M. (2016). A Statistically-Based Homogenization Approach for Particle Random Composites as Micropolar Continua. In: Altenbach, H., Forest, S. (eds) Generalized Continua as Models for Classical and Advanced Materials. Advanced Structured Materials, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-31721-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31721-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31719-9

  • Online ISBN: 978-3-319-31721-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics