Skip to main content

Genetic Basis of Neural Tube Defects

  • Living reference work entry
  • First Online:

Abstract

Neural tube defects (NTDs) are common, often severe congenital malformations of the central nervous system. Anencephaly and open spina bifida (myelomeningocele) arise from faulty neural tube closure, encephalocele involves brain herniation through a skull defect, and closed ’dysraphism’ of the low spine results from abnormal secondary neurulation. Most cases of anencephaly and open spina bifida have multifactorial causation, with contributions from two or more genetic risk variants plus interacting non-genetic factors. Occipital encephalocele by contrast is often a single gene disorder and is now considered a ‘ciliopathy’, resulting from defects in genes required for primary cilium function. The genetic basis of spinal dysraphism is unknown. Clues to the genetic basis of NTDs come from chromosomal anomalies, that can pinpoint critical genes within aberrant chromosomal regions, family studies that have identified single gene-related NTDs, and mouse models where more than 200 different genes are known to be essential for neural tube closure. Genes of folate one-carbon metabolism, especially those functioning in the mitochondria, have been implicated in causation of anencephaly and open spina bifida. Genes of the planar cell polarity pathway are required for initiation of neural tube closure in mice, and unique variants occur in a range of open human NTDs. However, only a small proportion of all NTDs have an established genetic causation, and ongoing research is seeking associations with candidate genes, as well as undertaking exome, and increasingly whole-genome, sequencing of cases compared with controls. Quantitative alterations in gene expression level resulting from mutations of cis-regulatory sequences, as well as epigenetic mechanisms (e.g. DNA methylation), may also play key roles in NTD causation. Such studies are important both to reveal the causation of a group of important human birth defects, and also to enable development of genetic tests to predict the risk of NTDs for prospective parents.

This is a preview of subscription content, log in via an institution.

References

  • Abdul-Aziz NM, Turmaine M, Greene ND, Copp AJ (2009) EphrinA-EphA receptor interactions in mouse spinal neurulation: implications for neural fold fusion. Int J Dev Biol 53:559–568

    Article  CAS  PubMed  Google Scholar 

  • Adler PN (2002) Planar signaling and morphogenesis in drosophila. Dev Cell 2:525–535

    Article  CAS  PubMed  Google Scholar 

  • Amorim MR, Lima MA, Castilla EE, Orioli IM (2007) Non-Latin European descent could be a requirement for association of NTDs and MTHFR variant 677C > T: a meta-analysis. Am J Med Genet A 143A:1726–1732

    Article  CAS  PubMed  Google Scholar 

  • Au KS, Northrup H, Kirkpatrick TJ, Volcik KA, Fletcher JM, Townsend IT, Blanton SH, Tyerman GH, Villarreal G, King TM (2005) Promotor genotype of the platelet-derived growth factor receptor-alpha gene shows population stratification but not association with spina bifida meningomyelocele. Am J Med Genet A 139:194–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bauters M, Frints SG, Van EH, Spruijt L, Baldewijns MM, de Die-Smulders CE, Fryns JP, Marynen P, Froyen G (2014) Evidence for increased SOX3 dosage as a risk factor for X-linked hypopituitarism and neural tube defects. Am J Med Genet A 164A:1947–1952

    Article  PubMed  CAS  Google Scholar 

  • Beaudin AE, Abarinov EV, Noden DM, Perry CA, Chu S, Stabler SP, Allen RH, Stover PJ (2011) Shmt1 and de novo thymidylate biosynthesis underlie folate-responsive neural tube defects in mice. Am J Clin Nutr 93:789–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudin AE, Abarinov EV, Malysheva O, Perry CA, Caudill M, Stover PJ (2012a) Dietary folate, but not choline, modifies neural tube defect risk in Shmt1 knockout mice. Am J Clin Nutr 95:109–114

    Article  CAS  PubMed  Google Scholar 

  • Beaudin AE, Perry CA, Stabler SP, Allen RH, Stover PJ (2012b) Maternal Mthfd1 disruption impairs fetal growth but does not cause neural tube defects in mice. Am J Clin Nutr 95:882–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boue A, Boue J, Gropp A (1985) Cytogenetics of pregnancy wastage. Adv Hum Genet 14:1–57

    CAS  PubMed  Google Scholar 

  • Brouns MR, de Castro SC, Terwindt-Rouwenhorst EA, Massa V, Hekking JW, HIrst CS, Savery D, Munts C, Partridge D, Lamers W, Kohler E, van Straaten HW, Copp AJ, Greene ND (2011) Over-expression of Grhl2 causes spina bifida in the axial defects mutant mouse. Hum Mol Genet 20:1536–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmichael SL, Rasmussen SA, Shaw GM (2010) Prepregnancy obesity: a complex risk factor for selected birth defects. Birth Defects Res A Clin Mol Teratol 88:804–810

    Article  CAS  PubMed  Google Scholar 

  • Carrel T, Herman GE, Moore GE, Stanier P (2001) Lack of mutations in ZIC3 in three families with neural tube defects. Am J Med Genet 98:283–285

    Article  CAS  PubMed  Google Scholar 

  • Chen CP (2007a) Chromosomal abnormalities associated with neural tube defects (I): full aneuploidy. Taiwan J Obstet Gynecol 46:325–335

    Article  PubMed  Google Scholar 

  • Chen CP (2007b) Chromosomal abnormalities associated with neural tube defects (II): partial aneuploidy. Taiwan J Obstet Gynecol 46:336–351

    Google Scholar 

  • Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A, John SW, Smith RS, Bottiglieri T, Bagley P, Selhub J, Rudnicki MA, James SJ, Rozen R (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10:433–443

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu P, Evans TC Jr, Ettwiller LM (2017) DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification. Science 355:752–756

    Article  CAS  PubMed  Google Scholar 

  • Copp AJ, Adzick NS, Chitty LS, Fletcher JM, Holmbeck GN, Shaw GM (2015) Spina bifida. Nat Rev Dis Primers 1:20157

    Google Scholar 

  • Creasy MR, Alberman ED (1976) Congenital malformations of the central nervous system in spontaneous abortions. J Med Genet 13:9–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson CE, Li Q, Churchill GA, Osborne LR, McDermid HE (2007) Modifier locus for exencephaly in Cecr2 mutant mice is syntenic to the 10q25.3 region associated with neural tube defects in humans. Physiol Genomics 31:244–251

    Article  CAS  PubMed  Google Scholar 

  • Davidson CM, Northrup H, King TM, Fletcher JM, Townsend I, Tyerman GH, Au KS (2008) Genes in glucose metabolism and association with spina bifida. Reprod Sci 15:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Castro SC, Malhas A, Leung KY, Gustavsson P, Vaux DJ, Copp AJ, Greene ND (2012) Lamin b1 polymorphism influences morphology of the nuclear envelope, cell cycle progression, and risk of neural tube defects in mice. PLoS Genet 8:e1003059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dolk H, Loane M, Garne E (2010) The prevalence of congenital anomalies in Europe. Adv Exp Med Biol 686:349–364

    Article  PubMed  Google Scholar 

  • Dunlevy LPE, Chitty LS, Doudney K, Burren KA, Stojilkovic-Mikic T, Stanier P, Scott R, Copp AJ, Greene NDE (2007) Abnormal folate metabolism in foetuses affected by neural tube defects. Brain 130:1043–1049

    Article  PubMed  Google Scholar 

  • Dupepe EB, Patel DM, Rocque BG, Hopson B, Arynchyna AA, Bishop ER, Blount JP (2017) Surveillance survey of family history in children with neural tube defects. J Neurosurg Pediatr 19:690–695

    Google Scholar 

  • Etheredge AJ, Finnell RH, Carmichael SL, Lammer EJ, Zhu H, Mitchell LE, Shaw GM (2012) Maternal and infant gene-folate interactions and the risk of neural tube defects. Am J Med Genet A 158A:2439–2446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finnell RH, Bennett GD, Karras SB, Mohl VK (1988) Common hierarchies of susceptibility to the induction of neural tube defects in mouse embryos by valproic acid and its 4-propyl-4-pentenoic acid metabolite. Teratology 38:313–320

    Article  CAS  PubMed  Google Scholar 

  • Francesca LC, Claudia R, Molinario C, Annamaria M, Chiara F, Natalia C, Emanuele A, Valentina P, Giovanni N, Costantino R, Eugenio S, Fiorella G (2016) Variants in TNIP1, a regulator of the NF-kB pathway, found in two patients with neural tube defects. Childs Nerv Syst 32:1061–1067

    Article  PubMed  Google Scholar 

  • Gelineau-van Waes J, Heller S, Bauer LK, Wilberding J, Maddox JR, Aleman F, Rosenquist TH, Finnell RH (2008) Embryonic development in the reduced folate carrier knockout mouse is modulated by maternal folate supplementation. Birth Defects Res A Clin Mol Teratol 82:494–507

    Article  PubMed  CAS  Google Scholar 

  • Gelineau-van Waes J, Voss KA, Stevens VL, Speer MC, Riley RT (2009) Maternal fumonisin exposure as a risk factor for neural tube defects. Adv Food Nutr Res 56:145–181

    Article  CAS  PubMed  Google Scholar 

  • Gelineau-van Waes J, Rainey MA, Maddox JR, Voss KA, Sachs AJ, Gardner NM, Wilberding JD, Riley RT (2012) Increased sphingoid base-1-phosphates and failure of neural tube closure after exposure to fumonisin or FTY720. Birth Defects Res A Clin Mol Teratol 94:790–803

    Article  CAS  PubMed  Google Scholar 

  • Goumy C, Gay-Bellile M, Eymard-Pierre E, Kemeny S, Gouas L, Dechelotte P, Gallot D, Veronese L, Tchirkov A, Pebrel-Richard C, Vago P (2014) De novo 2q36.1q36.3 interstitial deletion involving the PAX3 and EPHA4 genes in a fetus with spina bifida and cleft palate. Birth Defects Res A Clin Mol Teratol 100:507–511

    Article  CAS  PubMed  Google Scholar 

  • Greene ND, Copp AJ (2014) Neural tube defects. Annu Rev Neurosci 37:221–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene NDE, Gerrelli D, Van Straaten HWM, Copp AJ (1998) Abnormalities of floor plate, notochord and somite differentiation in the loop-tail (Lp) mouse: a model of severe neural tube defects. Mech Dev 73:59–72

    Article  CAS  PubMed  Google Scholar 

  • Greene ND, Massa V, Copp AJ (2009) Understanding the causes and prevention of neural tube defects: insights from the splotch mouse model. Birth Defects Res A Clin Mol Teratol 85:322–330

    Article  CAS  PubMed  Google Scholar 

  • Greene ND, Stanier P, Moore GE (2011) The emerging role of epigenetic mechanisms in the aetiology of neural tube defects. Epigenetics 6:875–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustavsson P, Greene ND, Lad D, Pauws E, de Castro SC, Stanier P, Copp AJ (2007) Increased expression of Grainyhead-like-3 rescues spina bifida in a folate-resistant mouse model. Hum Mol Genet 16:2640–2646

    Article  CAS  PubMed  Google Scholar 

  • Haggarty P, Hoad G, Campbell DM, Horgan GW, Piyathilake C, McNeill G (2013) Folate in pregnancy and imprinted gene and repeat element methylation in the offspring. Am J Clin Nutr 97:94–99

    Article  CAS  PubMed  Google Scholar 

  • Harris MJ, Juriloff DM (2010) An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol 88:653–669

    Article  CAS  PubMed  Google Scholar 

  • Helwig U, Imai K, Schmahl W, Thomas BE, Varnum DS, Nadeau JH, Balling R (1995) Interaction between undulated and Patch leads to an extreme form of spina bifida in double-mutant mice. Nat Genet 11:60–63

    Article  CAS  PubMed  Google Scholar 

  • Herman GE, El Hodiri HM (2002) The role of Zic3 in vertebrate development. Cytogenet Cell Genet 99:229–235

    Article  CAS  Google Scholar 

  • Jiang J, Zhang Y, Wei L, Sun Z, Liu Z (2014) Association between MTHFD1 G1958A polymorphism and neural tube defects susceptibility: a meta-analysis. PLoS One 9:e101169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joosten PH, Toepoel M, Mariman EC, Van Zoelen EJ (2001) Promoter haplotype combinations of the platelet-derived growth factor alpha-receptor gene predispose to human neural tube defects. Nat Genet 27:215–217

    Article  CAS  PubMed  Google Scholar 

  • Joubert BR, den Dekker HT, Felix JF, Bohlin J, Ligthart S, Beckett E, Tiemeier H, van Meurs JB, Uitterlinden AG, Hofman A, Haberg SE, Reese SE, Peters MJ, Andreassen BK, Steegers EA, Nilsen RM, Vollset SE, Midttun O, Ueland PM, Franco OH, Dehghan A, de Jongste JC, MC W, Wang T, Peddada SD, Jaddoe VW, Nystad W, Duijts L, London SJ (2016) Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun 7:10577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juriloff DM, Harris MJ (2000) Mouse models for neural tube closure defects. Hum Mol Genet 9:993–1000

    Article  CAS  PubMed  Google Scholar 

  • Juriloff DM, Harris MJ (2012) A consideration of the evidence that genetic defects in planar cell polarity contribute to the etiology of human neural tube defects. Birth Defects Res A Clin Mol Teratol 94:824–840

    Article  CAS  PubMed  Google Scholar 

  • Keller R, Shook D, Skoglund P (2008) The forces that shape embryos: physical aspects of convergent extension by cell intercalation. Phys Biol 5:15007

    Article  Google Scholar 

  • Khoury MJ, Erickson JD, James LM (1982) Etiologic heterogeneity of neural tube defects: clues from epidemiology. Am J Epidemiol 115:538–548

    Article  CAS  PubMed  Google Scholar 

  • Kibar Z, Torban E, McDearmid JR, Reynolds A, Berghout J, Mathieu M, Kirillova I, De Marco P, Merello E, Hayes JM, Wallingford JB, Drapeau P, Capra V, Gros P (2007) Mutations in VANGL1 associated with neural-tube defects. N Engl J Med 356:1432–1437

    Article  CAS  PubMed  Google Scholar 

  • Krupp DR, Soldano KL, Garrett ME, Cope H, Ashley-Koch AE, Gregory SG (2014) Missing genetic risk in neural tube defects: can exome sequencing yield an insight? Birth Defects Res A Clin Mol Teratol 100:642–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucera J (1971) Rate and type of congenital anomalies among offspring of diabetic women. J Reprod Med 7:73–82

    CAS  PubMed  Google Scholar 

  • Leck I (1974) Causation of neural tube defects: clues from epidemiology. Br Med Bull 30:158–163

    Article  CAS  PubMed  Google Scholar 

  • Leduc RY, Singh P, McDermid HE (2016) Genetic backgrounds and modifier genes of NTD mouse models: an opportunity for greater understanding of the multifactorial etiology of neural tube defects. Birth Defects Res A Clin Mol Teratol 109:140

    Article  CAS  Google Scholar 

  • Lei YP, Zhang T, Li H, BL W, Jin L, Wang HY (2010) VANGL2 mutations in human cranial neural-tube defects. N Engl J Med 362:2232–2235

    Article  CAS  PubMed  Google Scholar 

  • Lemay P, Guyot MC, Tremblay E, Dionne-Laporte A, Spiegelman D, Henrion E, Diallo O, De Marco P, Merello E, Massicotte C, Desilets V, Michaud JL, Rouleau GA, Capra V, Kibar Z (2015) Loss-of-function de novo mutations play an important role in severe human neural tube defects. J Med Genet 52:493–497

    Article  CAS  PubMed  Google Scholar 

  • Lew SM, Kothbauer KF (2007) Tethered cord syndrome: an updated review. Pediatr Neurosurg 43:236–248

    Article  PubMed  Google Scholar 

  • Li Z, Ren A, Zhang L, Ye R, Li S, Zheng J, Hong S, Wang T, Li Z (2006) Extremely high prevalence of neural tube defects in a 4-county area in Shanxi Province, China. Birth Defects Res A Clin Mol Teratol 76:237–240

    Article  CAS  PubMed  Google Scholar 

  • Lupo PJ, Canfield MA, Chapa C, Lu W, Agopian AJ, Mitchell LE, Shaw GM, Waller DK, Olshan AF, Finnell RH, Zhu H (2012) Diabetes and obesity-related genes and the risk of neural tube defects in the national birth defects prevention study. Am J Epidemiol 176:1101–1109

    Article  PubMed  PubMed Central  Google Scholar 

  • McFadden DE, Kalousek DK (1989) Survey of neural tube defects in spontaneously aborted embryos. Am J Med Genet 32:356–358

    Article  CAS  PubMed  Google Scholar 

  • Meng J, Han L, Zhuang B (2015) Association between MTHFD1 polymorphisms and neural tube defect susceptibility. J Neurol Sci 348:188–194

    Article  CAS  PubMed  Google Scholar 

  • Missmer SA, Suarez L, Felkner M, Wang E, Merrill AH Jr, Rothman KJ, Hendricks KA (2006) Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ Health Perspect 114:237–241

    Article  PubMed  Google Scholar 

  • Mitchison HM, Valente EM (2017) Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol 241:294–309

    Article  PubMed  Google Scholar 

  • Molloy AM, Quadros EV, Sequeira JM, Troendle JF, Scott JM, Kirke PN, Mills JL (2009) Lack of association between folate-receptor autoantibodies and neural-tube defects. N Engl J Med 361:152–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momb J, Lewandowski JP, Bryant JD, Fitch R, Surman DR, Vokes SA, Appling DR (2013) Deletion of Mthfd1l causes embryonic lethality and neural tube and craniofacial defects in mice. Proc Natl Acad Sci U S A 110:549–554

    Article  CAS  PubMed  Google Scholar 

  • Moretti ME, Bar-Oz B, Fried S, Koren G (2005) Maternal hyperthermia and the risk for neural tube defects in offspring: systematic review and meta-analysis. Epidemiology 16:216–219

    Article  PubMed  Google Scholar 

  • Morrison K, Papapetrou C, Attwood J, Hol F, Lynch SA, Sampath A, Hamel B, Burn J, Sowden J, Stott D, Mariman E, Edwards YH (1996) Genetic mapping of the human homologue (T) of mouse T(Brachyury) anda search for allele association between human T and spina bifida. Hum Mol Genet 5:669–674

    Article  CAS  PubMed  Google Scholar 

  • MRC Vitamin Study Research Group (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338:131–137

    Article  Google Scholar 

  • Murdoch JN, Damrau C, Paudyal A, Bogani D, Wells S, Greene ND, Stanier P, Copp AJ (2014) Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice. Dis Model Mech 7:1153–1163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narisawa A, Komatsuzaki S, Kikuchi A, Niihori T, Aoki Y, Fujiwara K, Tanemura M, Hata A, Suzuki Y, Relton CL, Grinham J, Leung KY, Partridge D, Robinson A, Stone V, Gustavsson P, Stanier P, Copp AJ, Greene ND, Tominaga T, Matsubara Y, Kure S (2012) Mutations in genes encoding the glycine cleavage system predispose to neural tube defects in mice and humans. Hum Mol Genet 21:1496–1503

    Article  CAS  PubMed  Google Scholar 

  • Newton R, Stanier P, Loughna S, Henderson DJ, Forbes SA, Farrall M, Jensson O, Moore GE (1994) Linkage analysis of 62 X-chromosomal loci excludes the X chromosome in an Icelandic family showing apparent X-linked recessive inheritance of neural tube defects. Clin Genet 45:241–249

    Article  CAS  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (2002) The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology 65:162–170

    Article  PubMed  CAS  Google Scholar 

  • Ouyang S, Li Y, Liu Z, Chang H, Wu J (2013a) Association between MTR A2756G and MTRR A66G polymorphisms and maternal risk for neural tube defects: a meta-analysis. Gene 515:308–312

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Liu Z, Li Y, Wu J (2013b) Meta-analyses on the association of MTR A2756G and MTRR A66G polymorphisms with neural tube defect risks in Caucasian children. J Matern Fetal Neonatal Med 26:1166–1170

    Article  CAS  PubMed  Google Scholar 

  • Ouyang S, Liu Z, Li Y, Ma F, Wu J (2014) Cystathionine beta-synthase 844ins68 polymorphism is unrelated to susceptibility to neural tube defects. Gene 535:119–123

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan N, Jia D, Geary-Joo C, Wu X, Ferguson-Smith AC, Fung E, Bieda MC, Snyder FF, Gravel RA, Cross JC, Watson ED (2013) Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155:81–93

    Article  CAS  PubMed  Google Scholar 

  • Pai YJ, Leung KY, Savery D, Hutchin T, Prunty H, Heales S, Brosnan ME, Brosnan JT, Copp AJ, Greene ND (2015) Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice. Nat Commun 6:6388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parle-McDermott A, Pangilinan F, O’Brien KK, Mills JL, Magee AM, Troendle J, Sutton M, Scott JM, Kirke PN, Molloy AM, Brody LC (2009) A common variant in MTHFD1L is associated with neural tube defects and mRNA splicing efficiency. Hum Mutat 30:1650–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    Article  CAS  PubMed  Google Scholar 

  • Piedrahita JA, Oetama B, Bennett GD, Van Waes J, Kamen BA, Richardson J, Lacey SW, Anderson RGW, Finnell RH (1999) Mice lacking the folic acid-binding protein Folbp1 are defective in early embryonic development. Nat Genet 23:228–232

    Article  CAS  PubMed  Google Scholar 

  • Pike ST, Rajendra R, Artzt K, Appling DR (2010) Mitochondrial C1-tetrahydrofolate synthase (MTHFD1L) supports the flow of mitochondrial one-carbon units into the methyl cycle in embryos. J Biol Chem 285:4612–4620

    Article  CAS  PubMed  Google Scholar 

  • Rampersaud E, Melvin EC, Speer MC (2006) Nonsyndromic neural tube defects: genetic basis and genetic investigations. In: Wyszynski DF (ed) Neural tube defects: from origin to treatment. Oxford University Press, Oxford, pp 165–175

    Google Scholar 

  • Rasmussen SA Frias JL (2006) Genetics of syndromic neural tube defects. In: Wyszynski DF (ed) Neural tube defects: from origin to treatment. Oxford University Press, Oxford, pp 185–197

    Google Scholar 

  • Rasmussen SA, Chu SY, Kim SY, Schmid CH, Lau J (2008) Maternal obesity and risk of neural tube defects: a metaanalysis. Am J Obstet Gynecol 198:611–619

    Article  PubMed  Google Scholar 

  • Reynolds A, McDearmid JR, Lachance S, Marco PD, Merello E, Capra V, Gros P, Drapeau P, Kibar Z (2010) VANGL1 rare variants associated with neural tube defects affect convergent extension in zebrafish. Mech Dev 127:385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson A, Escuin S, Doudney K, Vekemans M, Stevenson RE, Greene ND, Copp AJ, Stanier P (2012) Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat 33:440–447

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg SP, Da Costa MP, Sequeira JM, Cracco J, Roberts JL, Weedon J, Quadros EV (2004) Autoantibodies against folate receptors in women with a pregnancy complicated by a neural-tube defect. N Engl J Med 350:134–142

    Article  CAS  PubMed  Google Scholar 

  • Roudgari H, Farndon P, Murray A, Hardy C, Miedzybrodzka Z (2012) Is PATCHED an important candidate gene for neural tube defects? Cranial and thoracic neural tube defects in a family with Gorlin syndrome: a case report. Clin Genet 82:71–76

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero JE, Northrup H, Au KS (2015) Association of facilitated glucose transporter 2 gene variants with the myelomeningocele phenotype. Birth Defects Res A Clin Mol Teratol 103:479–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savory JG, Mansfield M, Rijli FM, Lohnes D (2011) Cdx mediates neural tube closure through transcriptional regulation of the planar cell polarity gene Ptk7. Development 138:1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Shah RH, Northrup H, Hixson JE, Morrison AC, Au KS (2016) Genetic association of the glycine cleavage system genes and myelomeningocele. Birth Defects Res A Clin Mol Teratol 106:847–853

    Article  CAS  PubMed  Google Scholar 

  • Soler NG, Walsh CH, Malins JM (1976) Congenital malformations in infants of diabetic mothers. Q J Med 45:303–313

    CAS  PubMed  Google Scholar 

  • Stiefel D, Copp AJ, Meuli M (2007) Fetal spina bifida: loss of neural function in utero. J Neurosurg 106:213–221

    PubMed  PubMed Central  Google Scholar 

  • Stothard KJ, Tennant PW, Bell R, Rankin J (2009) Maternal overweight and obesity and the risk of congenital anomalies: a systematic review and meta-analysis. JAMA 301:636–650

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Morita H, Ueno N (2012) Molecular mechanisms of cell shape changes that contribute to vertebrate neural tube closure. Dev Growth Differ 54:266–276

    Article  CAS  PubMed  Google Scholar 

  • Szymanska K, Hartill VL, Johnson CA (2014) Unraveling the genetics of Joubert and Meckel-Gruber syndromes. J Pediatr Genet 3:65–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tirumandas M, Sharma A, Gbenimacho I, Shoja MM, Tubbs RS, Oakes WJ, Loukas M (2013) Nasal encephaloceles: a review of etiology, pathophysiology, clinical presentations, diagnosis, treatment, and complications. Childs Nerv Syst 29:739–744

    Article  PubMed  Google Scholar 

  • Van der Put NMJ, Eskes TKAB, Blom HJ (1997) Is the common 677C-->T mutation in the methylenetetrahydrofolate reductase gene a risk factor for neural tube defects? A meta-analysis. Q J Med 90:111–115

    Article  Google Scholar 

  • Wallingford JB, Harland RM (2002) Neural tube closure requires dishevelled-dependent convergent extension of the midline. Development 129:5815–5825

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang F, Guan J, Le J, Wu L, Zou J, Zhao H, Pei L, Zheng X, Zhang T (2010) Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. Am J Clin Nutr 91:1359–1367

    Article  CAS  PubMed  Google Scholar 

  • Wang HG, Wang JL, Zhang J, Zhao LX, Zhai GX, Xiang YZ, Chang P (2012a) Reduced folate carrier A80G polymorphism and susceptibility to neural tube defects: a meta-analysis. Gene 510:180–184

    Article  CAS  PubMed  Google Scholar 

  • Wang XW, Luo YL, Wang W, Zhang Y, Chen Q, Cheng YL (2012b) Association between MTHFR A1298C polymorphism and neural tube defect susceptibility: a metaanalysis. Am J Obstet Gynecol 206:251–257

    PubMed  Google Scholar 

  • Wyszynski DF, Nambisan M, Surve T, Alsdorf RM, Smith CR, Holmes LB, Antiepileptic Drug PR (2005) Increased rate of major malformations in offspring exposed to valproate during pregnancy. Neurology 64:961–965

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Chen Y, Ayub Q, Huang N, Ball EV, Mort M, Phillips AD, Shaw K, Stenson PD, Cooper DN, Tyler-Smith C (2012) Deleterious- and disease-allele prevalence in healthy individuals: insights from current predictions, mutation databases, and population-scale resequencing. Am J Hum Genet 91:1022–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav U, Kumar P, Yadav SK, Mishra OP, Rai V (2015) Polymorphisms in folate metabolism genes as maternal risk factor for neural tube defects: an updated meta-analysis. Metab Brain Dis 30:7–24

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Zhao L, Long Y, Zou P, Ji G, Gu A, Zhao P (2012) Association of the maternal MTHFR C677T polymorphism with susceptibility to neural tube defects in offsprings: evidence from 25 case-control studies. PLoS One 7:e41689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XR, Ng D, Alcorta DA, Liebsch NJ, Sheridan E, Li S, Goldstein AM, Parry DM, Kelley MJ (2009) T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet 41:1176–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Yang L, Qi L, Guo Y, Lin X, Zhang Y, Du Y (2013) Association between the methionine synthase A2756G polymorphism and neural tube defect risk: a meta-analysis. Gene 520:7–13

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chen J, Wang B, Ding C, Liu H (2015) Association between MTHFR C677T polymorphism and neural tube defect risks: a comprehensive evaluation in three groups of NTD patients, mothers, and fathers. Birth Defects Res A Clin Mol Teratol 103:488–500

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Lou J, Zhong R, Wu J, Zou L, Sun Y, Lu X, Liu L, Miao X, Xiong G (2013) Genetic variants in the folate pathway and the risk of neural tube defects: a meta-analysis of the published literature. PLoS One 8:e59570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Lu X, Liu H, Zhao P, Li K, Li L (2015) MTHFD1 polymorphism as maternal risk for neural tube defects: a meta-analysis. Neurol Sci 36:607–616

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Copp .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Copp, A.J., Stanier, P., Greene, N.D.E. (2017). Genetic Basis of Neural Tube Defects. In: Di Rocco, C., Pang, D., Rutka, J. (eds) Textbook of Pediatric Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-31512-6_105-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31512-6_105-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31512-6

  • Online ISBN: 978-3-319-31512-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics