Skip to main content

Towards Intelligent Biological Control: Controlling Boolean Networks with Boolean Networks

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9597))

Included in the following conference series:

Abstract

Gene regulatory networks (GRNs) are the complex dynamical systems that orchestrate the activities of biological cells. In order to design effective therapeutic interventions for diseases such as cancer, there is a need to control GRNs in more sophisticated ways. Computational control methods offer the potential for discovering such interventions, but the difficulty of the control problem means that current methods can only be applied to GRNs that are either very small or that are topologically restricted. In this paper, we consider an alternative approach that uses evolutionary algorithms to design GRNs that can control other GRNs. This is motivated by previous work showing that computational models of GRNs can express complex control behaviours in a relatively compact fashion. As a first step towards this goal, we consider abstract Boolean network models of GRNs, demonstrating that Boolean networks can be evolved to control trajectories within other Boolean networks. The Boolean approach also has the advantage of a relatively easy mapping to synthetic biology implementations, offering a potential path to in vivo realisation of evolved controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akutsu, T., Hayashida, M., Ching, W.K., Ng, M.K.: Control of boolean networks: hardness results and algorithms for tree structured networks. J. Theor. Biol. 244(4), 670–679 (2007)

    Article  MathSciNet  Google Scholar 

  2. Aldana, M.: Boolean dynamics of networks with scale-free topology. Phys. D Nonlinear Phenom. 185(1), 45–66 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amaral, L.A., Díaz-Guilera, A., Moreira, A.A., Goldberger, A.L., Lipsitz, L.A.: Emergence of complex dynamics in a simple model of signaling networks. Proc. Natl. Acad. Sci. USA 101(44), 15551–15555 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azuma, S.-I., Imura, J.-I.: Synthesis of optimal controllers for piecewise affine systems with sampled-data switching. Automatica 42(5), 697–710 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ballesteros, F.J., Luque, B.: Random boolean networks response to external periodic signals. Phys. A Stat. Mech. Appl. 313(3), 289–300 (2002)

    Article  MATH  Google Scholar 

  6. Bull, L., Preen, R.: On dynamical genetic programming: random boolean networks in learning classifier systems. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 37–48. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Cheng, D., Qi, H.: Controllability and observability of boolean control networks. Automatica 45(7), 1659–1667 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. comput. Biol. 9(1), 67–103 (2002)

    Article  Google Scholar 

  9. Drossel, B.: Random boolean networks. Rev. Nonlinear Dyn. Complex. 1, 69–110 (2008)

    Article  MATH  Google Scholar 

  10. Dubrova, E., Teslenko, M., Tenhunen, H.: A computational scheme based on random boolean networks. In: Priami, C., Dressler, F., Akan, O.B., Ngom, A. (eds.) Transactions on Computational Systems Biology X. LNCS (LNBI), vol. 5410, pp. 41–58. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Gershenson, C.: Introduction to random boolean networks. In: Bedau, M., Husbands, P., Hutton, T., Kumar, S., Suzuki, H. (eds.) Workshop and Tutorial Proceedings, Ninth International Conference on the Simulation and Synthesis of Living Systems (ALife IX), pp. 160–173 (2004)

    Google Scholar 

  12. Goudarzi, A., Teuscher, C., Gulbahce, N., Rohlf, T.: Emergent criticality through adaptive information processing in boolean networks. Phys. Rev. Lett. 108(12), 128702 (2012)

    Article  Google Scholar 

  13. Harris, S.E., Sawhill, B.K., Wuensche, A., Kauffman, S.: A model of transcriptional regulatory networks based on biases in the observed regulation rules. Complexity 7(4), 23–40 (2002)

    Article  Google Scholar 

  14. Harvey, I., Bossomaier, T.: Time out of joint: attractors in asynchronous random boolean networks. In: Proceedings of the Fourth European Conference on Artificial Life, pp. 67–75 (1997)

    Google Scholar 

  15. Kauffman, S.A.: The Origins of Order: Self Organization and Selection in Evolution. Oxford University Press, New York (1993)

    Google Scholar 

  16. Kim, J., Park, S.M., Cho, K.H.: Discovery of a kernel for controlling biomolecular regulatory networks. Sci. Rep. 3, 1–9 (2013)

    Google Scholar 

  17. Kitano, H.: Computational systems biology. Nature 420(6912), 206–210 (2002)

    Article  Google Scholar 

  18. Kitano, H.: Cancer as a robust system: implications for anticancer therapy. Nat. Rev. Cancer 4(3), 227–235 (2004)

    Article  MathSciNet  Google Scholar 

  19. Kobayashi, K., Hiraishi, K.: A petri net-based approach to control of boolean networks. In: 2012 Third International Conference on Networking and Computing (ICNC), pp. 399–403 (2012)

    Google Scholar 

  20. Kobayashi, K., Imura, J.I., Hiraishi, K.: Polynomial-time algorithm for controllability test of a class of boolean biological networks. EURASIP J. Bioinform. Syst. Biol. 2010(1), 210685 (2010)

    Google Scholar 

  21. Lones, M., Turner, A.P., Caves, L.S., Stepney, S., Tyrrell, A.M.: Adaptive robotic gait control using coupled artificial signalling networks, hopf oscillators and inverse kinematics. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 1435–1442 (2013)

    Google Scholar 

  22. Lones, M., Turner, A.P., Caves, L.S., Stepney, S., Smith, S.L., Tyrrell, A.M.: Artificial biochemical networks: evolving dynamical systems to control dynamical systems. IEEE Trans. Evol. Comput. 18(2), 145–166 (2014)

    Article  Google Scholar 

  23. Lones, M.A.: Computing with artificial gene regulatory networks. In: Iba, H., Noman, N. (eds.) Evolutionary Algorithms in Gene Regulatory Network Research. Wiley, Hoboken (2016)

    Google Scholar 

  24. Mesot, B., Teuscher, C.: Deducing local rules for solving global tasks with random boolean networks. Physica D Nonlinear Phenom. 211(1), 88–106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Milias-Argeitis, A., Summers, S., Stewart-Ornstein, J., Zuleta, I., Pincus, D., El-Samad, H., Khammash, M., Lygeros, J.: In silico feedback for in vivo regulation of a gene expression circuit. Nat. Biotechnol. 29(12), 1114–1116 (2011)

    Article  Google Scholar 

  26. Read, M., Andrews, P.S., Timmis, J., Kumar, V.: A domain model of experimental autoimmune encephalomyelitis. In: CoSMoS, pp. 9–44 (2009)

    Google Scholar 

  27. Read, M., Andrews, P.S., Timmis, J., Kumar, V.: Techniques for grounding agent-based simulations in the real domain: a case study in experimental autoimmune encephalomyelitis. Math. Comput. Model. Dyn. Syst. 18(1), 67–86 (2012)

    Article  MATH  Google Scholar 

  28. Roli, A., Manfroni, M., Pinciroli, C., Birattari, M.: On the design of boolean network robots. In: Di Chio, C. (ed.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 43–52. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Shi-Jian, C., Yi-Guang, H.: Control of random boolean networks via average sensitivity of boolean functions. Chin. Phys. B 20(3), 036401 (2011)

    Article  Google Scholar 

  30. Zanin, M., Pisarchik, A.N.: Boolean networks for cryptography and secure communication. Nonlinear Sci. Lett. B Chaos Fractal Synchronization 1(1), 27–34 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia S. Taou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Taou, N.S., Corne, D.W., Lones, M.A. (2016). Towards Intelligent Biological Control: Controlling Boolean Networks with Boolean Networks. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31204-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31203-3

  • Online ISBN: 978-3-319-31204-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics