Skip to main content

Potential of Solar Electricity for Grid-Connected Systems in Algeria

  • Conference paper
  • First Online:

Abstract

This chapter proposes a photovoltaic (PV) electricity potential for grid-connected systems in Algeria using a solar radiation database and a system model of a PV module and inverter. The solar radiation database is based on the PV Geographic Information System (PVGIS). The database was used to analyze solar energy resources and to determinate the PV potential in Algeria. Climatic parameters (irradiation and temperature) and technological parameters (inverter efficiency) are the most influential parameters for PV production systems. Using the database input data, many calculations were carried out to determine the PV production and identify the influential parameters. Therefore, a map of the PV electricity potential for grid-connected systems in Algeria was developed, and the expected power production for planned PV grid-connected installations was determined.

This is a preview of subscription content, log in via an institution.

References

  1. Zervos A (2014) Renewables 2014 global status report. In: Renewable energy policy network for the 21st century, Paris

    Google Scholar 

  2. Stambouli AB (2011) Promotion of renewable energies in Algeria: strategies and perspectives. Renew Sustain Energy Rev 15:1169–1181. doi:10.1016/j.rser.2010.11.017

    Article  Google Scholar 

  3. Yaiche MR, Bouhanik A, Bekkouche SMA, Malek A, Benouaz T (2014) Revised solar maps of Algeria based on sunshine duration. Energy Convers Manag 82:114–123. doi:10.1016/j.enconman.2014.02.063

    Article  Google Scholar 

  4. McKenney DW, Pelland S, Poissant Y, Morris R, Hutchinson M, Papadopol P, Lawrence K, Campbell K (2008) Spatial insolation models for photovoltaic energy in Canada. Sol Energy 82:1049–1061

    Article  Google Scholar 

  5. D’Agostino V, Zelenka A (1992) Supplementing solar radiation network data by co-Kriging with satellite images. Int J Climatol 12:749–761

    Article  Google Scholar 

  6. Remund J (2008) Quality of Meteonorm Version 6.0. Europe 6

    Google Scholar 

  7. Cros S, Albuisson M, Lefevre M, Rigollier C, Wald L (2004) HelioClim: a long-term database on solar radiation for Europe and Africa. In: Eurosun 2004. PSE GmbH, Freiburg, pp 916–920

    Google Scholar 

  8. Huld T, Suri M, Dunlop E, Albuisson M, Wald L (2005) Integration of Helioclim-1 database into PV-GIS to estimate solar electricity potential in Africa. In: Proceedings of 20th European photovoltaic solar energy conference

    Google Scholar 

  9. SoDa—Free time-series of solar radiation data [WWW Document] (2015) http://www.soda-is.com/eng/services/services_radiation_free_eng.php. Accessed 18 Mar 2015

  10. Surface meteorology and Solar Energy [WWW Document] (2015) https://eosweb.larc.nasa.gov/sse/. Accessed 18 Mar 2015

  11. Nguyen HT, Pearce JM (2010) Estimating potential photovoltaic yield with r. sun and the open source geographical resources analysis support system. Sol Energy 84:831–843

    Article  Google Scholar 

  12. Wahab MA, El-Metwally M, Hassan R, Lefevre M, Oumbe A, Wald L (2010) Assessing surface solar irradiance and its long-term variations in the northern Africa desert climate using Meteosat images. Int J Remote Sens 31:261–280

    Article  Google Scholar 

  13. Wahab MA, El-Metwally M, Hassan R, Lefevre M, Oumbe A, Wald L (2009) Assessing surface solar irradiance in Northern Africa desert climate and its long-term variations from Meteosat images. Int J Remote Sens 31:261–280

    Article  Google Scholar 

  14. Haurant P, Muselli M, Pillot B, Oberti P (2012) Disaggregation of satellite derived irradiance maps: evaluation of the process and application to Corsica. Sol Energy 86:3168–3182

    Article  Google Scholar 

  15. Ineichen P (2006) Comparison of eight clear sky broadband models against 16 independent data banks. Sol Energy 80:468–478. doi:10.1016/j.solener.2005.04.018

    Article  Google Scholar 

  16. Wald L, Blanc P, Lefevre M, Gschwind B (2011) The performances of the HelioClim databases in Mozambique. ISES Solar World Congress 2011:268–275

    Google Scholar 

  17. Blanc P, Gschwind B, Lefèvre M, Wald L (2011) The HelioClim project: surface solar irradiance data for climate applications. Remote Sens 3:343–361

    Article  Google Scholar 

  18. Njomo D, Wald L (2007) Solar irradiation retrieval in Cameroon from Meteosat satellite imagery using the Heliosat-2 method. ISESCO Sci Technol Vis 2:19–24

    Google Scholar 

  19. I.E.C. Standard (1998) International Standard IEC 61724: photovoltaic system performance monitoring. Guidelines for measurements, data exchange and analysis. IEC

    Google Scholar 

  20. I.E.C. Standard (2007) 60904-3, Photovoltaic devices—part 3: measurement principles for terrestrial photovoltaic (PV) solar devices with reference spectral irradiance data. International Electrotechnical Commission, Geneva

    Google Scholar 

  21. Aste N, Del Pero C, Leonforte F, Manfren M (2013) A simplified model for the estimation of energy production of PV systems. Energy 59:503–512. doi:10.1016/j.energy.2013.07.004

    Article  Google Scholar 

  22. Šúri M, Huld TA, Dunlop ED, Ossenbrink HA (2007) Potential of solar electricity generation in the European Union member states and candidate countries. Sol Energy 81:1295–1305

    Article  Google Scholar 

  23. Saffaripour MH, Mehrabian MA, Bazatgan H (2013) Predicting solar radiation fluxes for solar energy system applications. Int. J. Environ. Sci. Techno. 10:761–768

    Google Scholar 

  24. Quesada B, Sánchez C, Cañada J, Royo R, Payá J (2011) Experimental results and simulation with TRNSYS of a 7.2 kWp grid-connected photovoltaic system. Appl Energy 88:1772–1783. doi:10.1016/j.apenergy.2010.12.011

    Article  Google Scholar 

  25. JRC’s Institute for Energy and Transport—PVGIS—European Commission [WWW Document] (2015) http://re.jrc.ec.europa.eu/pvgis/. Accessed 18 Mar 2015

  26. Gastli A, Charabi Y (2010) Solar electricity prospects in Oman using GIS-based solar radiation maps. Renew Sustain Energy Rev 14:790–797. doi:10.1016/j.rser.2009.08.018

    Article  Google Scholar 

  27. De Soto W, Klein SA, Beckman WA (2006) Improvement and validation of a model for photovoltaic array performance. Sol Energy 80:78–88. doi:10.1016/j.solener.2005.06.010

    Article  Google Scholar 

  28. Messenger RA, Ventre J (2010) Photovoltaic systems engineering. CRC, Boca Raton

    Google Scholar 

  29. Osterwald CR (1986) Translation of device performance measurements to reference conditions. Sol Cells 18:269–279

    Article  Google Scholar 

  30. Chouder A, Silvestre S, Taghezouit B, Karatepe E (2013) Monitoring, modelling and simulation of PV systems using LabVIEW. Sol Energy 91:337–349. doi:10.1016/j.solener.2012.09.016

    Article  Google Scholar 

  31. King DL, Gonzalez S, Galbraith GM, Boyson WE (2007) Performance model for grid-connected photovoltaic inverters (No. SAND2007-5036)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hassaine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Hassaine, L., Mraoui, A. (2017). Potential of Solar Electricity for Grid-Connected Systems in Algeria. In: Sayigh, A. (eds) Mediterranean Green Buildings & Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-30746-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30746-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30745-9

  • Online ISBN: 978-3-319-30746-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics