Skip to main content

Detecting and Characterizing Exomoons and Exorings

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Since the discovery of a planet transiting its host star in the year 2000, thousands of additional exoplanets and exoplanet candidates have been detected, mostly by NASA’s Kepler space telescope. Some of them are almost as small as the Earth’s moon. As the solar system is teeming with moons, more than a hundred of which are in orbit around the eight local planets, and with all of the local giant planets showing complex ring systems, astronomers have naturally started to search for moons and rings around exoplanets in the past few years. We here discuss the principles of the observational methods that have been proposed to find moons and rings beyond the solar system, and we review the first searches. Though no exomoon or exoring has been unequivocally validated so far, theoretical and technological requirements are now on the verge of being mature for such discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agnor CB, Hamilton DP (2006) Neptune’s capture of its moon Triton in a binary-planet gravitational encounter. Nature 441:192–194. doi:10.1038/nature04792

    Article  ADS  Google Scholar 

  • Agol E, Jansen T, Lacy B, Robinson T, Meadows V (2015) The center of light: spectroastrometric detection of exomoons. ApJ 812:5. doi:10.1088/0004-637X/812/1/5, 1509.01615

  • Auvergne M, Bodin P, Boisnard L et al (2009) The CoRoT satellite in flight: description and performance. A&A 506:411–424. doi:10.1051/0004-6361/200810860, 0901.2206

  • Awiphan S, Kerins E (2013) The detectability of habitable exomoons with Kepler. MNRAS 432:2549–2561. doi:10.1093/mnras/stt614, 1304.2925

  • Barnes JW, Fortney JJ (2004) Transit detectability of ring systems around extrasolar giant planets. ApJ 616:1193–1203. doi:10.1086/425067, astro-ph/0409506

  • Ben-Jaffel L, Ballester GE (2014) Transit of Exomoon plasma tori: new diagnosis. ApJ 785:L30. doi:10.1088/2041-8205/785/2/L30, 1404.1084

  • Bennett DP, Batista V, Bond IA et al (2014) MOA-2011-BLG-262Lb: a sub-earth-mass moon orbiting a gas giant primary or a high velocity planetary system in the galactic bulge. ApJ 785:155. doi:10.1088/0004-637X/785/2/155, 1312.3951

  • Borucki WJ, Koch D, Basri G et al (2010) Kepler planet-detection mission: introduction and first results. Science 327:977. doi:10.1126/science.1185402

    Article  ADS  Google Scholar 

  • Braga-Ribas F, Sicardy B, Ortiz JL et al (2014) A ring system detected around the Centaur (10199) Chariklo. Nature 508:72–75. doi:10.1038/nature13155, 1409.7259

  • Brown TM, Charbonneau D, Gilliland RL, Noyes RW, Burrows A (2001) Hubble space telescope time-series photometry of the transiting planet of HD 209458. ApJ 552:699–709. doi:10.1086/320580, astro-ph/0101336

  • Cabrera J, Schneider J (2007) Detecting companions to extrasolar planets using mutual events. A&A 464:1133–1138. doi:10.1051/0004-6361:20066111, astro-ph/0703609

  • Cameron AGW, Ward WR (1976) The origin of the Moon. In: Lunar and planetary science conference, Houston, vol 7

    Google Scholar 

  • Canup RM (2005) A giant impact origin of Pluto-Charon. Science 307:546–550. doi:10.1126/science.1106818

    Article  ADS  Google Scholar 

  • Canup RM, Ward WR (2002) Formation of the Galilean satellites: conditions of accretion. AJ 124:3404–3423. doi:10.1086/344684

    Article  ADS  Google Scholar 

  • Charbonneau D, Winn JN, Latham DW et al (2006) Transit photometry of the core-dominated planet HD 149026b. ApJ 636:445–452. doi:10.1086/497959, astro-ph/0508051

  • Crida A, Charnoz S (2012) Formation of regular satellites from ancient massive rings in the solar system. Science 338:1196. doi:10.1126/science.1226477, 1301.3808

  • de Wit J, Wakeford HR, Gillon M et al (2016) A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. Nature 537:69–72. doi:10.1038/nature18641, 1606.01103

  • Deienno R, Yokoyama T, Nogueira EC, Callegari N, Santos MT (2011) Effects of the planetary migration on some primordial satellites of the outer planets. I. Uranus’ case. A&A 536:A57. doi:10.1051/0004-6361/201014862

    Google Scholar 

  • Deienno R, Nesvorný D, Vokrouhlický D, Yokoyama T (2014) Orbital perturbations of the Galilean satellites during planetary encounters. AJ 148:25. doi:10.1088/0004-6256/148/2/25, 1405.1880

  • Domingos RC, Winter OC, Yokoyama T (2006) Stable satellites around extrasolar giant planets. MNRAS 373:1227–1234. doi:10.1111/j.1365-2966.2006.11104.x

    Article  ADS  Google Scholar 

  • Han C, Han W (2002) On the feasibility of detecting satellites of extrasolar planets via microlensing. ApJ 580:490–493. doi:10.1086/343082, astro-ph/0207372

  • Heising MZ, Marcy GW, Schlichting HE (2015) A search for ringed exoplanets using Kepler photometry. ApJ 814:81. doi:10.1088/0004-637X/814/1/81, 1511.01083

  • Heller R (2014) Detecting extrasolar Moons akin to solar system satellites with an orbital sampling effect. ApJ 787:14. doi:10.1088/0004-637X/787/1/14, 1403.5839

  • Heller R (2016) Transits of extrasolar moons around luminous giant planets. A&A 588:A34. doi:10.1051/0004-6361/201527496, 1603.00174

  • Heller R, Albrecht S (2014) How to determine an exomoon’s sense of orbital motion. ApJ 796:L1. doi:10.1088/2041-8205/796/1/L1, 1409.7245

  • Heller R, Marleau GD, Pudritz RE (2015) The formation of the Galilean moons and Titan in the Grand Tack scenario. A&A 579:L4. doi:10.1051/0004-6361/201526348, 1506.01024

  • Heller R, Hippke M, Jackson B (2016a) Modeling the orbital sampling effect of extrasolar moons. ApJ 820:88. doi:10.3847/0004-637X/820/2/88, 1603.07112

  • Heller R, Hippke M, Placek B, Angerhausen D, Agol E (2016b) Predictable patterns in planetary transit timing variations and transit duration variations due to exomoons. A&A 591:A67. doi:10.1051/0004-6361/201628573, 1604.05094

  • Hippke M (2015) On the detection of exomoons: a search in Kepler data for the orbital sampling effect and the scatter peak. ApJ 806:51. doi:10.1088/0004-637X/806/1/51, 1502.05033

  • Jacobson SA, Morbidelli A (2014) Lunar and terrestrial planet formation in the grand tack scenario. Philos Trans R Soc Lond Ser A 372:0174. doi:10.1098/rsta.2013.0174, 1406.2697

  • Kenworthy MA, Mamajek EE (2015) Modeling giant extrasolar ring systems in eclipse and the case of J1407b: sculpting by exomoons? ApJ 800:126. doi:10.1088/0004-637X/800/2/126, 1501.05652

  • Kipping DM (2009a) Transit timing effects due to an exomoon. MNRAS 392:181–189. doi:10.1111/j.1365-2966.2008.13999.x, 0810.2243

  • Kipping DM (2009b) Transit timing effects due to an exomoon – II. MNRAS 396:1797–1804. doi:10.1111/j.1365-2966.2009.14869.x, 0904.2565

  • Kipping DM (2011) LUNA: an algorithm for generating dynamic planet-moon transits. MNRAS 416:689–709. doi:10.1111/j.1365-2966.2011.19086.x, 1105.3499

  • Kipping DM, Fossey SJ, Campanella G (2009) On the detectability of habitable exomoons with Kepler-class photometry. MNRAS 400:398–405. doi:10.1111/j.1365-2966.2009.15472.x, 0907.3909

  • Kipping DM, Bakos GÁ, Buchhave L, Nesvorný D, Schmitt A (2012) The hunt for exomoons with Kepler (HEK). I. Description of a new observational project. ApJ 750:115. doi:10.1088/0004-637X/750/2/115, 1201.0752

  • Kipping DM, Schmitt AR, Huang X et al (2015) The hunt for exomoons with Kepler (HEK): V. A survey of 41 planetary candidates for exomoons. ApJ 813:14. doi:10.1088/0004-637X/813/1/14, 1503.05555

  • Levison HF, Dones L, Chapman CR et al (2001) Could the lunar “Late Heavy Bombardment” have been triggered by the formation of Uranus and Neptune? Icarus 151:286–306. doi:10.1006/icar.2001.6608

    Article  ADS  Google Scholar 

  • Lewis KM, Sackett PD, Mardling RA (2008) Possibility of detecting Moons of pulsar planets through time-of-arrival analysis. ApJ 685:L153–L156. doi:10.1086/592743, 0805.4263

  • Lewis KM, Ochiai H, Nagasawa M, Ida S (2015) Extrasolar binary planets II: detectability by transit observations. ApJ 805:27. doi:10.1088/0004-637X/805/1/27, 1504.06365

  • Liebig C, Wambsganss J (2010) Detectability of extrasolar moons as gravitational microlenses. Astron Astrophys 520:A68, 13 pp

    Article  ADS  MATH  Google Scholar 

  • Maciejewski G, Dimitrov D, Neuhäuser R et al (2010) Transit timing variation in exoplanet WASP-3b. MNRAS 407:2625–2631. doi:10.1111/j.1365-2966.2010.17099.x, 1006.1348

  • Mamajek EE, Quillen AC, Pecaut MJ et al (2012) Planetary construction zones in occultation: discovery of an extrasolar ring system transiting a young sun-like star and future prospects for detecting eclipses by circumsecondary and circumplanetary disks. AJ 143:72. doi:10.1088/0004-6256/143/3/72, 1108.4070

  • Marois C, Macintosh B, Barman T et al (2008) Direct imaging of multiple planets orbiting the star HR 8799. Science 322:1348. doi:10.1126/science.1166585, 0811.2606

  • Montalto M, Gregorio J, Boué G et al (2012) A new analysis of the WASP-3 system: no evidence for an additional companion. Mon Not R Astron Soc 427(4):2757–2771. doi:10.1111/j.1365-2966.2012.21926.x, http://mnras.oxfordjournals.org/content/427/4/2757.abstract, http://mnras.oxfordjournals.org/content/427/4/2757.full.pdf+html

  • Morbidelli A, Tsiganis K, Batygin K, Crida A, Gomes R (2012) Explaining why the uranian satellites have equatorial prograde orbits despite the large planetary obliquity. Icarus 219:737–740. doi:10.1016/j.icarus.2012.03.025, 1208.4685

  • Moskovitz NA, Gaidos E, Williams DM (2009) The effect of lunarlike satellites on the orbital infrared light curves of Earth-analog planets. Astrobiology 9:269–277. doi:10.1089/ast.2007.0209, 0810.2069

  • Noyola JP, Satyal S, Musielak ZE (2014) Detection of exomoons through observation of radio emissions. ApJ 791:25. doi:10.1088/0004-637X/791/1/25, 1308.4184

  • Noyola JP, Satyal S, Musielak ZE (2016) On the radio detection of multiple-exomoon systems due to plasma torus sharing. ApJ 821:97. doi:10.3847/0004-637X/821/2/97, 1603.01862

  • Ohta Y, Taruya A, Suto Y (2009) Predicting photometric and spectroscopic signatures of rings around transiting extrasolar planets. ApJ 690:1–12. doi:10.1088/0004-637X/690/1/1, astro-ph/0611466

  • Pál A (2012) Light-curve modelling for mutual transits. MNRAS 420:1630–1635. doi:10.1111/j.1365-2966.2011.20151.x, 1111.1741

  • Peters MA, Turner EL (2013) On the direct imaging of tidally heated exomoons. ApJ 769:98. doi:10.1088/0004-637X/769/2/98, 1209.4418

  • Pollack JB, Reynolds RT (1974) Implications of Jupiter’s early contraction history for the composition of the galilean satellites. Icarus 21:248–253. doi:10.1016/0019-1035(74)90040-2

    Article  ADS  Google Scholar 

  • Pont F, Gilliland RL, Moutou C et al (2007) Hubble space telescope time-series photometry of the planetary transit of HD 189733: no Moon, no rings, starspots. A&A 476:1347–1355. doi:10.1051/0004-6361:20078269, 0707.1940

  • Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249–330. doi:10.1007/s10686-014-9383-4, 1310.0696

  • Robinson TD (2011) Modeling the infrared spectrum of the earth-Moon system: implications for the detection and characterization of Earthlike extrasolar planets and their Moonlike companions. ApJ 741:51. doi:10.1088/0004-637X/741/1/51, 1110.3744

  • Rosenblatt P, Charnoz S, Dunseath KM et al (2016) Accretion of phobos and Deimos in an extended debris disc stirred by transient moons. Nat Geosci 9(8):581–583. http://dx.doi.org/10.1038/ngeo2742

    Article  ADS  Google Scholar 

  • Rufu R, Aharonson O, Perets HB (2017) A multiple-impact origin for the moon. Nature Geosci. Advance online publication. http://dx.doi.org/10.1038/ngeo2866

    Google Scholar 

  • Samsing J (2015) Extracting periodic transit signals from noisy light curves using fourier series. ApJ 807:65. doi:10.1088/0004-637X/807/1/65, 1503.03504

  • Santos NC, Martins JHC, Boué G et al (2015) Detecting ring systems around exoplanets using high resolution spectroscopy: the case of 51 Pegasi b. A&A 583:A50. doi:10.1051/0004-6361/201526673, 1509.00723

  • Sartoretti P, Schneider J (1999) On the detection of satellites of extrasolar planets with the method of transits. A&AS 134:553–560. doi:10.1051/aas:1999148

    Article  ADS  Google Scholar 

  • Sato M, Asada H (2009) Effects of mutual transits by extrasolar planet-companion systems on light curves. PASJ 61:L29. 0906.2590

    Google Scholar 

  • Sengupta S, Marley MS (2016) Detecting exomoons around self-luminous giant exoplanets through polarization. ApJ 824:76. doi:10.3847/0004-637X/824/2/76, 1604.04773

  • Simon A, Szatmáry K, Szabó GM (2007) Determination of the size, mass, and density of “exomoons” from photometric transit timing variations. A&A 470:727–731. doi:10.1051/0004-6361:20066560, 0705.1046

  • Simon AE, Szabó GM, Szatmáry K, Kiss LL (2010) Methods for exomoon characterization: combining transit photometry and the Rossiter-McLaughlin effect. MNRAS 406:2038–2046. doi:10.1111/j.1365-2966.2010.16818.x

    ADS  Google Scholar 

  • Simon AE, Szabó GM, Kiss LL, Szatmáry K (2012) Signals of exomoons in averaged light curves of exoplanets. MNRAS 419:164–171. doi:10.1111/j.1365-2966.2011.19682.x, 1108.4557

  • Simon A, Szabó G, Kiss L, Fortier A, Benz W (2015) CHEOPS performance for exomoons: the detectability of exomoons by using optimal decision algorithm. PASP 127:1084–1095. doi:10.1086/683392, 1508.00321

  • Skowron J, Udalski A, Szymański MK et al (2014) New method to measure proper motions of microlensed sources: application to candidate free-floating-planet event MOA-2011-BLG-262. ApJ 785:156. doi:10.1088/0004-637X/785/2/156, 1312.7297

  • Spahn F, Schmidt J, Albers N et al (2006) Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311:1416–1418. doi:10.1126/science.1121375

    Article  ADS  Google Scholar 

  • Szabó GM, Szatmáry K, Divéki Z, Simon A (2006) Possibility of a photometric detection of “exomoons”. A&A 450:395–398. doi:10.1051/0004-6361:20054555, astro-ph/0601186

  • Szabó R, Szabó GM, Dálya G et al (2013) Multiple planets or exomoons in Kepler hot Jupiter systems with transit timing variations? A&A 553:A17. doi:10.1051/0004-6361/201220132, 1207.7229

  • Tusnski LRM, Valio A (2011) Transit model of planets with Moon and ring systems. ApJ 743:97. doi:10.1088/0004-637X/743/1/97, 1111.5599

  • Williams DM, Knacke RF (2004) Looking for planetary Moons in the spectra of distant Jupiters. Astrobiology 4:400–403. doi:10.1089/ast.2004.4.400

    Article  ADS  Google Scholar 

  • Zhuang Q, Gao X, Yu Q (2012) The Rossiter-McLaughlin effect for exomoons or binary planets. ApJ 758:111. doi:10.1088/0004-637X/758/2/111, 1207.6966

  • Zuluaga JI, Kipping DM, Sucerquia M, Alvarado JA (2015) A novel method for identifying exoplanetary rings. ApJ 803:L14. doi:10.1088/2041-8205/803/1/L14, 1502.07818

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Heller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Heller, R. (2017). Detecting and Characterizing Exomoons and Exorings. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics