Skip to main content

Astrometry as an Exoplanet Discovery Method

  • Living reference work entry
  • First Online:
Book cover Handbook of Exoplanets

Abstract

Astrometry consists in measuring the positions and the motions of the astronomical objects on the sky compared to other stars. The increased accuracy of such measurements opens the way to determine not only the proper motions of stars and their parallactic displacements due to Earth motion around the Sun but also the orbital motion caused by the presence of orbiting planets of all nature. Several techniques have been investigated using different types of instrument with limited impact on exoplanet detection so far, but the technique has not only great potentials but is complementary to other discovery methods. The importance of stability and precision of the astrometric measurements over a long period may explain the relative lack of results, but the advent of a space mission like Gaia will certainly change the impact of astrometry in the exoplanet field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Benedict GF, McArthur B, Nelan E et al (1994) Astrometry with hubble space telescope fine guidance sensor number 3: position-mode stability and precision. PASP 106:327–336

    Article  ADS  Google Scholar 

  • Benedict GF, McArthur B, Chappell DW et al (1999) Interferometric astrometry of proxima centauri and Barnard’s star using hubble space telescope fine guidance sensor 3: detection limits for substellar companions. AJ 118:1086–1100

    Article  ADS  Google Scholar 

  • Benedict GF, McArthur BE, Forveille T et al (2002) A mass for the extrasolar planet Gliese 876b determined from hubble space telescope fine guidance sensor 3 astrometry and high-precision radial velocities. ApJ 581:L115–L118

    Article  ADS  Google Scholar 

  • Boss AP, Weinberger AJ, Anglada-Escudé G et al (2009) The Carnegie astrometric planet search program. PASP 121:1218

    Article  ADS  Google Scholar 

  • Casertano S, Lattanzi MG, Sozzetti A et al (2008) Double-blind test program for astrometric planet detection with Gaia. A&A 482:699–729

    Article  ADS  Google Scholar 

  • Colavita MM, Wallace JK, Hines BE et al (1999) The palomar testbed interferometer. ApJ 510:505–521

    Article  ADS  Google Scholar 

  • Delplancke F (2008) The PRIMA facility phase-referenced imaging and micro-arcsecond astrometry. New Astron Rev 52:199–207

    Article  ADS  Google Scholar 

  • Desort M, Lagrange AM, Galland F et al (2009) Extrasolar planets and brown dwarfs around A-F type stars. VII. θ Cygni radial velocity variations: planets or stellar phenomenon? A&A 506:1469–1476

    Article  ADS  Google Scholar 

  • Eriksson U, Lindegren L (2007) Limits of ultra-high-precision optical astrometry. Stellar surface structures. A&A 476:1389–1400

    Google Scholar 

  • Fischer DA, Howard AW, Laughlin GP et al (2014) Exoplanet detection techniques. In: Beuther H et al (eds) Protostars and planets VI. University of Arizona Press, Tucson, pp 715–737

    Google Scholar 

  • Goullioud R, Catanzarite JH, Dekens FG, Shao M, Marr JC IV (2008) Overview of the SIM planetQuest light mission concept. In: Optical and infrared interferometry, Proceedings of SPIE, vol 7013, p 70134T. https://doi.org/10.1117/12.789988

    ADS  Google Scholar 

  • Heintz WD (1978) Reexamination of suspected unresolved binaries. ApJ 220:931–934

    Article  ADS  Google Scholar 

  • Hilditch R (2001) Book review: an introduction to close binary stars/Cambridge University Press, 2001. Observatory 121:389

    ADS  Google Scholar 

  • Janson M, Brandeker A, Boehm C, Krone-Martins A (2018) Future astrometric space missions for exoplanet science. Springer. In this volume

    Google Scholar 

  • Lane BF, Muterspaugh MW (2004) Differential astrometry of subarcsecond scale binaries at the palomar testbed interferometer. ApJ 601:1129–1135

    Article  ADS  Google Scholar 

  • Lane BF, Kuchner MJ, Boden AF, Creech-Eakman M, Kulkarni SR (2000) Direct detection of pulsations of the Cepheid star ζ Gem and an independent calibration of the period-luminosity relation. Nature 407:485–487

    Article  ADS  Google Scholar 

  • Lazorenko PF (2002) Differential image motion at non-Kolmogorov distortions of the turbulent wave-front. A&A 382:1125–1137

    Article  ADS  Google Scholar 

  • Lazorenko PF, Mayor M, Dominik M et al (2009) Precision multi-epoch astrometry with VLT cameras FORS1/2. A&A 505:903–918

    Article  ADS  Google Scholar 

  • Lazorenko PF, Sahlmann J, Ségransan D et al (2011) Astrometric search for a planet around VB 10. A&A 527:A25

    Article  ADS  Google Scholar 

  • Lindegren L (1980) Atmospheric limitations of narrow-field optical astrometry. A&A 89:41–47

    ADS  Google Scholar 

  • Makarov VV, Beichman CA, Catanzarite JH et al (2009) Starspot jitter in photometry, astrometry, and radial velocity measurements. ApJ 707:L73–L76

    Article  ADS  Google Scholar 

  • Malbet F, Léger A, Shao M et al (2012) High precision astrometry mission for the detection and characterization of nearby habitable planetary systems with the nearby Earth astrometric telescope (NEAT). Exp Astron 34:385–413

    Article  ADS  Google Scholar 

  • Malbet F, Léger A, Anglada Escudé G et al (2016) Microarcsecond astrometric observatory Theia: from dark matter to compact objects and nearby earths. In: Space telescopes and instrumentation 2016: optical, infrared, and millimeter wave, Proceedings of SPIE, vol 9904, p 99042F. https://doi.org/10.1117/12.2234425

  • Marr-IV JC, Shao M, Goullioud R (2008) SIM-Lite: progress report. In: Optical and infrared interferometry, Proceedings of SPIE, vol 7013, p 70132M. https://doi.org/10.1117/12.790273

    ADS  Google Scholar 

  • McArthur BE, Benedict GF, Henry GW et al (2014) Astrometry, radial velocity, and photometry: the HD 128311 system remixed with data from HST, HET, and APT. ApJ 795:41

    Article  ADS  Google Scholar 

  • Melchior P, Spergel D, Lanz A (2018) In the crosshair: astrometric exoplanet detection with WFIRST’s diffraction spikes. AJ 155:102

    Article  ADS  Google Scholar 

  • Pott JU, Woillez J, Akeson RL et al (2009) Astrometry with the Keck interferometer: the ASTRA project and its science. New Astron Rev 53:363–372

    Article  ADS  Google Scholar 

  • Pravdo SH, Shaklan SB (2009) An ultracool star’s candidate planet. ApJ 700:623–632

    Article  ADS  Google Scholar 

  • Pravdo SH, Shaklan SB, Henry T, Benedict GF (2004) Astrometric discovery of GJ 164B. ApJ 617:1323–1329

    Article  ADS  Google Scholar 

  • Reuyl D, Holmberg E (1943) On the existence of a third component in the system 70 Ophiuchi. ApJ 97:41

    Article  ADS  Google Scholar 

  • Sahlmann J (2012) Observing exoplanet populations with high-precision astrometry. PhD thesis, Observatoire de Genève, Université de Genève

    Google Scholar 

  • Sahlmann J, Lazorenko PF, Ségransan D et al (2016) The mass of planet GJ 676A b from ground-based astrometry. A planetary system with two mature gas giants suitable for direct imaging. A&A 595:A77

    Article  ADS  Google Scholar 

  • Shao M, Colavita MM (1992) Potential of long-baseline infrared interferometry for narrow-angle astrometry. A&A 262:353–358

    ADS  Google Scholar 

  • Sozzetti A (2010) Detection and characterization of planetary systems with μas astrometry. In: Gozdziewski K, Niedzielski A, Schneider J (eds) EAS publications series, vol 42, pp 55–77. doi: https://doi.org/10.1051/eas/1042004

    Article  Google Scholar 

  • Sozzetti A, Bruijne J (2018) Space astrometry missions for exoplanet science: gaia and the legacy of hipparcos. Springer. In this volume

    Google Scholar 

  • Strand KA (1943) 61 Cygni as a triple system. PASP 55:29–32

    Article  ADS  Google Scholar 

  • Traub WA (2010) Astrometric-radial-velocity and coronagraph-imaging double-blind studies. In: Coudé du Foresto V, Gelino DM, Ribas I (eds) Pathways towards habitable planets. Astronomical society of the pacific conference series, vol 430, p 249

    Google Scholar 

  • Traub WA, Beichman C, Boden AF et al (2010) Detectability of Earth-like planets in multi-planet systems: preliminary report. In: Gozdziewski K, Niedzielski A, Schneider J (eds) EAS publications series, EAS publications series, vol 42, pp 191–199. https://doi.org/10.1051/eas/1042022

    Article  Google Scholar 

  • Unwin SC, Shao M, Tanner AM et al (2008) Taking the measure of the Universe: precision astrometry with SIM planetQuest. PASP 120:38

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Malbet .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Malbet, F., Sozzetti, A. (2018). Astrometry as an Exoplanet Discovery Method. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_196-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_196-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics