Skip to main content

Permutation Entropy and Order Patterns in Long Time Series

  • Conference paper
  • First Online:
Time Series Analysis and Forecasting

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

While ordinal techniques are commonplace in statistics, they have been introduced to time series fairly recently by Hallin and coauthors. Permutation entropy, an average of frequencies of order patterns, was suggested by Bandt and Pompe in 2002 and used by many authors as a complexity measure in physics, medicine, engineering, and economy. Here a modified version is introduced, the “distance to white noise.” For datasets with tens of thousands or even millions of values, which are becoming standard in many fields, it is possible to study order patterns separately, determine certain differences of their frequencies, and define corresponding autocorrelation type functions. In contrast to classical autocorrelation, these functions are invariant with respect to nonlinear monotonic transformations of the data. For order three patterns, a variance-analytic “Pythagoras formula” combines the different autocorrelation functions with our new version of permutation entropy. We demonstrate the use of such correlation type functions in sliding window analysis of biomedical and environmental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amigo, J.: Permutation Complexity in Dynamical Systems. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  2. Amigo, J., Keller, K., Kurths, J. (eds.): Recent progress in symbolic dynamics and permutation entropy. Eur. Phys. J. Spec. Top. 222 (2013)

    Google Scholar 

  3. Aragoneses, A., Rubido, N., Tiana-Aisina, J., Torrent, M.C., Masoller, C.: Distinguishing signatures of determinism and stochasticity in spiking complex systems. Sci. Rep. 3, Article 1778 (2012)

    Google Scholar 

  4. Bandt, C.: Autocorrelation type functions for big and dirty data series (2014). http://arxiv.org/abs/1411.3904

    Google Scholar 

  5. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002)

    Article  Google Scholar 

  6. Bandt, C., Shiha, F.: Order patterns in time series. J. Time Ser. Anal. 28, 646–665 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. California Environmental Protection Agency, Air Resources Board: www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm (2014)

  8. Ferguson, T.S., Genest, C., Hallin, M.: Kendall’s tau for serial dependence. Can. J. Stat. 28, 587–604 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferlazzo, E. et al.: Permutation entropy of scalp EEG: a tool to investigate epilepsies. Clin. Neurophysiol. 125, 13–20 (2014)

    Article  Google Scholar 

  10. German Weather Service: www.dwd.de, Climate and Environment, Climate Data (2014)

  11. Goldberger, A.L. et al.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). Data at: http://www.physionet.org/physiobank/database/capslpdb (2014)

  12. Hallin, M., Puri, M.L.: Aligned rank tests for linear models with autocorrelated error terms. J. Multivar. Anal. 50, 175–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuo, C.-E., Liang, S.-F.: Automatic stage scoring of single-channel sleep EEG based on multiscale permutation entropy. In: 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 448–451 (2011)

    Google Scholar 

  14. Lange, H., Rosso, O.A., Hauhs, M.: Ordinal pattern and statistical complexity analysis of daily stream flow time series. Eur. Phys. J. Spec. Top. 222, 535–552 (2013)

    Article  Google Scholar 

  15. Nair, U., Krishna, B.M., Namboothiri, V.N.N., Nampoori, V.P.N.: Permutation entropy based real-time chatter detection using audio signal in turning process. Int. J. Adv. Manuf. Technol. 46, 61–68 (2010)

    Article  Google Scholar 

  16. Nicolaou, N., Georgiou, J.: The use of permutation entropy to characterize sleep encephalograms. Clin. EEG Neurosci. 42, 24 (2011)

    Article  Google Scholar 

  17. Ouyang, G., Dang, C., Richards, D.A., Li, X.: Ordinal pattern based similarity analysis for EEG recordings. Clin. Neurophysiol. 121, 694–703 (2010)

    Article  Google Scholar 

  18. Soriano, M.C., Zunino, L., Rosso, O.A., Fischer, I., Mirasso, C.R.: Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis. IEEE J. Quantum Electron. 47(2), 252–261 (2011)

    Article  Google Scholar 

  19. Staniek, M., Lehnertz, K.: Symbolic transfer entropy. Phys. Rev. Lett. 100, 158101 (2008)

    Article  Google Scholar 

  20. Terzano, M.G., et al.: Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med. 2(6), 537–553 (2001)

    Article  Google Scholar 

  21. The National Water Level Observation Network: www.tidesandcurrents.noaa.gov/nwlon.html (2014)

  22. Toomey, J.P., Kane, D.M.: Mapping the dynamical complexity of a semiconductor laser with optical feedback using permutation entropy. Opt. Express 22(2), 1713–1725 (2014)

    Article  Google Scholar 

  23. Unakafov, A.M., Keller, K.: Conditional entropy of ordinal patterns. Physica D 269, 94–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yan, R., Liu, Y., Gao, R.X.: Permutation entropy: a nonlinear statistical measure for status characterization of rotary machines. Mech. Syst. Signal Process. 29, 474–484 (2012)

    Article  Google Scholar 

  25. Zanin, M., Zunino, L., Rosso, O.A., Papo, D.: Permutation entropy and its main biomedical and econophysics applications: a review. Entropy 14, 1553–1577 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bandt, C. (2016). Permutation Entropy and Order Patterns in Long Time Series. In: Rojas, I., Pomares, H. (eds) Time Series Analysis and Forecasting. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-28725-6_5

Download citation

Publish with us

Policies and ethics