Skip to main content

Geospatial Big Data for Environmental and Agricultural Applications

  • Chapter
  • First Online:
Big Data Concepts, Theories, and Applications

Abstract

Earth observation (EO) and environmental geospatial datasets are growing at an unprecedented rate in size, variety and complexity, thus, creating new challenges and opportunities as far as their access, archiving, processing and analytics are concerned. Currently, huge imaging streams are reaching several petabytes in many satellite archives worldwide. In this chapter, we review the current state-of-the-art in big data frameworks able to access, handle, process, analyse and deliver geospatial data and value-added products. Operational services that feature efficient implementations and different architectures allowing in certain cases the online and near real-time processing and analytics are detailed. Based on the current status, state-of-the-art and emerging challenges, the present study highlights certain issues, insights and future directions towards the efficient exploitation of EO big data for important engineering, environmental and agricultural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.esa.int.

  2. 2.

    http://terra.nasa.gov.

  3. 3.

    http://aqua.nasa.gov.

  4. 4.

    www.opengeospatial.org/standards.

  5. 5.

    http://www.copernicus-masters.com/index.php?kat=winners.html&anzeige=winner_t-systems2014.html.

  6. 6.

    https://www.digitalglobe.com.

  7. 7.

    www.earthserver.eu.

  8. 8.

    www.planetserver.eu.

  9. 9.

    http://www.helix-nebula.eu/usecases/esa-ssep-use-case.

  10. 10.

    http://www.copernicus-masters.com/index.php?kat=winners.html&anzeige=winner_bsc2014.html.

  11. 11.

    http://www.globalforestwatch.org/.

  12. 12.

    http://ceph.com/docs/master/rbd/rbd/.

  13. 13.

    http://www.gluster.org/.

References

  1. Adamov A (2012) Distributed file system as a basis of data-intensive computing. In: 2012 6th International conference on application of information and communication technologies (AICT), pp 1–3. doi:10.1109/ICAICT.2012.6398484

  2. Aiordachioaie A, Baumann P (2010) Petascope: An open-source implementation of the ogc wcs geo service standards suite. In: Gertz M, Ludascher B (eds) Scientific and statistical database management. Lecture Notes in Computer Science, vol 6187, Springer, Berlin/Heidelberg, pp 160–168

    Google Scholar 

  3. Aji A, Wang F, Vo H, Lee R, Liu Q, Zhang X, Saltz J (2013) Hadoop gis: A high performance spatial data warehousing system over mapreduce. Proc VLDB Endowment 6(11):1009–1020. doi:10.14778/2536222.2536227, http://dx.doi.org/10.14778/2536222.2536227

    Google Scholar 

  4. Asrar G, Kanemasu E, Yoshida M (1985) Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angles. Remote Sens Environ 17:1–11

    Article  Google Scholar 

  5. Assuncao MD, Calheiros RN, Bianchi S, Netto MA, Buyya R (2014) Big data computing and clouds: trends and future directions. J Parallel Distrib Comput. doi:http://dx.doi.org/10.1016/j.jpdc.2014.08.003, http://www.sciencedirect.com/science/article/pii/S0743731514001452

    Google Scholar 

  6. Babaee M, Datcu M, Rigoll G (2013) Assessment of dimensionality reduction based on communication channel model; application to immersive information visualization. In: 2013 IEEE international conference on big data, pp 1–6. doi:10.1109/BigData.2013.6691726

  7. Barroso L, Dean J, Holzle U (2003) Web search for a planet: the google cluster architecture. IEEE Micro 23(2):22–28. doi:10.1109/MM.2003.1196112

    Article  Google Scholar 

  8. Baumann P (1994) Management of multidimensional discrete data. Int J Very Large Data Bases 4(3):401–444

    Article  Google Scholar 

  9. Baumann P (1999) A database array algebra for spatio-temporal data and beyond. In: Next generation information technologies and systems, pp 76–93

    Google Scholar 

  10. Baumann P (2009) Array databases and raster data management. In: Ozsu T, Liu L (eds), Encyclopedia of database systems. Springer, New York

    Google Scholar 

  11. Baumann P (2010) The OGC web coverage processing service (WCPS) standard. GeoInformatica 14(4):447–479. doi:10.1007/s10707-009-0087-2

    Article  MathSciNet  Google Scholar 

  12. Baumann P (2012) OGC WCS 2.0 Interface Standard-Core: Corrigendum (OGC 09-110r4)

    Google Scholar 

  13. Baumann P (2014) rasdaman: array databases boost spatio-temporal analytics. In: 2014 fifth international conference on computing for geospatial research and application (COM.Geo), pp 54–54

    Google Scholar 

  14. Baumann P, Nativi S (2012) Adding big earth data analytics to geoss. Group on Earth Observations Ninth Plenary Session – GEO-IX. Brazil, 22–23 November

    Google Scholar 

  15. Baumann P, Dehmel A, Furtado P, Ritsch R, Widmann N (1998) The multidimensional database system rasdaman. In: Proceedings of the 1998 ACM SIGMOD international conference on management of data. ACM Press, New York, pp 575–577

    Chapter  Google Scholar 

  16. Begoli E, Horey J (2012) Design principles for effective knowledge discovery from big data. In: 2012 joint working IEEE/IFIP conference on IEEE software architecture (WICSA) and European conference on software architecture (ECSA), pp 215–218

    Google Scholar 

  17. Buehler K, McKee L (2006) The openGIS guide (third edition). In: Technical Committee, version 1, Engineering Specification Best Practices, OGIS TC Doc. 96-001

    Google Scholar 

  18. Cammalleri C, Anderson M, Gao F, Hain C, Ku W (2014) Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agr Forest Meteorol 186(0):1–11

    Google Scholar 

  19. Cappelaere P, Sanchez S, Bernabe S, Scuri A, Mandl D, Plaza A (2013) Cloud implementation of a full hyperspectral unmixing chain within the nasa web coverage processing service for EO-1. IEEE J Sel Top Appl Earth Obs Remote Sens 6(2):408–418. doi:10.1109/JSTARS.2013.2250256

    Article  Google Scholar 

  20. CartoDB (Retrieved 2015) https://cartodb.com/platform

  21. Chen J, Chen J, Liao A, Cao X, Chen L, Chen X, He C, Han G, Peng S, Lu M, Zhang W, Tong X, Mills J (2014) Global land cover mapping at 30m resolution: a POK-based operational approach. Int J Photogr Remote Sens. doi:http://dx.doi.org/10.1016/j.isprsjprs.2014.09.002

    Google Scholar 

  22. Choo J, Park H (2013) Customizing computational methods for visual analytics with big data. Computer Graphics and Applications, IEEE 33(4):22–28

    Article  Google Scholar 

  23. Davis B (1996) GIS: A Visual Approach. OnWord Press

    Google Scholar 

  24. de la Beaujardiere J (2006) OpenGIS Web Map Server Implementation Specification (OGC 06-042)

    Google Scholar 

  25. Dean J, Ghemawat S (2008) Mapreduce: Simplified data processing on large clusters. Commun ACM 51(1):107–113. doi 10.1145/1327452.1327492, http://doi.acm.org/10.1145/1327452.1327492

    Google Scholar 

  26. Demchenko Y, Zhao Z, Grosso P, Wibisono A, De Laat C (2012) Addressing big data challenges for scientific data infrastructure. In: 2012 IEEE 4th international conference on cloud computing technology and science (CloudCom). IEEE, New York, pp 614–617

    Google Scholar 

  27. Espinoza-Molina D, Datcu M (2013) Earth-observation image retrieval based on content, semantics, and metadata. IEEE IEEE Trans Geosci Remote Sens 51(11):5145–5159. doi:10.1109/TGRS.2013.2262232

    Article  Google Scholar 

  28. Evangelidis K, Ntouros K, Makridis S, Papatheodorou C (2014) Geospatial services in the cloud. Comput. Geosci. 63(0):116–122. doi:http://dx.doi.org/10.1016/j.cageo.2013.10.007, http://www.sciencedirect.com/science/article/pii/S0098300413002719

    Google Scholar 

  29. Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree compared. In: Grid computing environments workshop, 2008 (GCE ’08), pp 1–10. doi:10.1109/GCE.2008.4738445

  30. Furht B, Escalante A (2011) Handbook of cloud computing. Springer, New York

    MATH  Google Scholar 

  31. Garcia-Rojas A, Athanasiou S, Lehmann J, Hladky D (2013) Geoknow: leveraging geospatial data in the web of data. In: Open data on the web workshop, http://jens-lehmann.org/files/2013/odw_geoknow.pdf

    Google Scholar 

  32. gigaomcom (Retrieved 2015) Can you predict future traffic patterns? Nokia thinks it can. https://gigaom.com/2013/07/02/living-cities-lights-up-traffic-in-5-cities-with-interactive-data-visualization/

  33. Glenn EP, Huete AR, Nagler PL, Nelson SG (2008) Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors 8(4):2136. doi:10.3390/s8042136, http://www.mdpi.com/1424-8220/8/4/2136

    Google Scholar 

  34. Gray J (2008) Distributed computing economics. Queue 6(3):63–68. doi:10.1145/1394127.1394131, http://doi.acm.org/10.1145/1394127.1394131

    Google Scholar 

  35. Habib S, Morozov V, Frontiere N, Finkel H, Pope A, Heitmann K (2013) Hacc: Extreme scaling and performance across diverse architectures. In: Proceedings of the international conference on high performance computing, networking, storage and analysis (SC ’13). ACM, New York, pp 6:1–6:10. doi:10.1145/2503210.2504566, http://doi.acm.org/10.1145/2503210.2504566

  36. Han J, Haihong E, Le G, Du J (2011) Survey on nosql database. In: 2011 6th international conference on pervasive computing and applications (ICPCA), pp 363–366. doi:10.1109/ICPCA.2011.6106531

  37. Han W, Yang Z, Di L, Yue P (2014) A geospatial web service approach for creating on-demand cropland data layer thematic maps. Transactions of the ASABE 57(1):239–247. doi:http://dx.doi.org/10.13031/trans.57.10020

  38. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853. doi:10.1126/science.1244693

    Article  Google Scholar 

  39. Hatfield JL, Prueger JH (2010) Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sens 2(2):562. doi:10.3390/rs2020562, http://www.mdpi.com/2072-4292/2/2/562

    Google Scholar 

  40. Hunter PD, Tyler AN, Présing M, Kovács AW, Preston T (2008) Spectral discrimination of phytoplankton colour groups: the effect of suspended particulate matter and sensor spectral resolution. Remote Sens Environ 112(4):1527–1544. doi:http://dx.doi.org/10.1016/j.rse.2007.08.003, http://www.sciencedirect.com/science/article/pii/S0034425707004051, remote Sensing Data Assimilation Special Issue

    Google Scholar 

  41. Hwang K, Choi M (2013) Seasonal trends of satellite-based evapotranspiration algorithms over a complex ecosystem in East Asia. Remote Sens Environ 137(0):244–263

    Google Scholar 

  42. Idreos S, Kersten ML, Manegold S (2007) Database cracking. In: CIDR 2007, Third biennial conference on innovative data systems research, Asilomar, CA, January 7-10, 2007, Online Proceedings, pp 68–78, http://www.cidrdb.org/cidr2007/papers/cidr07p07.pdf

  43. Idreos S, Groffen F, Nes N, Manegold S, Mullender S, Kersten M (2012) Monetdb: two decades of research in column-oriented database architectures. IEEE Data Eng Bull 35(1):40–45

    Google Scholar 

  44. Ivanova MG, Kersten ML, Nes NJ, Gonçalves RA (2010) An architecture for recycling intermediates in a column-store. ACM Trans Database Syst 35(4):24:1–24:43. doi:10.1145/1862919.1862921, http://doi.acm.org/10.1145/1862919.1862921

    Google Scholar 

  45. Ivanova M, Kersten M, Manegold S (2012) Data vaults: A symbiosis between database technology and scientific file repositories. In: Ailamaki A, Bowers S (eds) Scientific and statistical database management. Lecture notes in computer science, vol. 7338. Springer, Berlin/Heidelberg, pp 485–494. doi:10.1007/978-3-642-31235-9_32, http://dx.doi.org/10.1007/978-3-642-31235-9_32

    Google Scholar 

  46. Karantzalos K, Bliziotis D, Karmas A (2015) A scalable web geospatial service for near real-time, high-resolution land cover mapping. IEEE J Sel Top Appl Earth Obs Remote Sens Special Issue on ‘Big Data in Remote Sensing’ 8(10):4665–4674

    Article  Google Scholar 

  47. Karantzalos K, Karmas A, Tzotsos A (2015) RemoteAgri: processing online big earth observation data for precision agriculture. In: European conference on precision agriculture

    Google Scholar 

  48. Karmas A, Karantzalos K (2015) Benchmarking server-side software modules for handling and processing remote sensing data through rasdaman. In: (WHISPERS) IEEE workshop on hyperspectral image and signal processing: evolution in remote sensing

    Google Scholar 

  49. Karmas A, Karantzalos K, Athanasiou S (2014) Online analysis of remote sensing data for agricultural applications. In: OSGeo’s European conference on free and open source software for geospatial

    Google Scholar 

  50. Karmas A, Tzotsos A, Karantzalos K (2015) Scalable geospatial web services through efficient, online and near real-time processing of earth observation data. In: (BigData Service 2015) IEEE international conference on big data computing service and applications

    Google Scholar 

  51. Kopsiaftis G, Karantzalos K (2015) Vehicle detection and traffic density monitoring from very high resolution satellite video data. In: IEEE international geoscience and remote sensing symposium (IGARSS 2015)

    Google Scholar 

  52. Koubarakis M, Kontoes C, Manegold S (2013) Real-time wildfire monitoring using scientific database and linked data technologies. In: 16th international conference on extending database technology

    Google Scholar 

  53. Kouzes R, Anderson G, Elbert S, Gorton I, Gracio D (2009) The changing paradigm of data-intensive computing. Computer 42(1):26–34. doi:10.1109/MC.2009.26

    Article  Google Scholar 

  54. Laney D (Retrieved 6 February 2001) 3d data management: controlling data volume, velocity and variety. Gartner

    Google Scholar 

  55. Lee C, Gasster S, Plaza A, Chang CI, Huang B (2011) Recent developments in high performance computing for remote sensing: a review. IEEE J Selected Top Appl Earth Obsand Remote Sens 4(3):508–527. doi:10.1109/JSTARS.2011.2162643

    Article  Google Scholar 

  56. Liu B, Blasch E, Chen Y, Shen D, Chen G (2013) Scalable sentiment classification for big data analysis using Naive Bayes Classifier. In: 2013 IEEE international conference on big data, pp 99–104. doi:10.1109/BigData.2013.6691740

  57. Ma Y, Wang L, Liu P, Ranjan R (2014) Towards building a data-intensive index for big data computing - a case study of remote sensing data processing. Information Sciences. doi:http://dx.doi.org/10.1016/j.ins.2014.10.006

    Google Scholar 

  58. Ma Y, Wang L, Zomaya A, Chen D, Ranjan R (2014) Task-tree based large-scale mosaicking for massive remote sensed imageries with dynamic dag scheduling. IEEE Trans Parallel Distrib Syst 25(8):2126–2137. doi:10.1109/TPDS.2013.272

    Article  Google Scholar 

  59. Ma Y, Wu H, Wang L, Huang B, Ranjan R, Zomaya A, Jie W (2014) Remote sensing big data computing: challenges and opportunities. Futur Gener Comput Syst. doi:http://dx.doi.org/10.1016/j.future.2014.10.029, http://www.sciencedirect.com/science/article/pii/S0167739X14002234

    Google Scholar 

  60. Menzies T, Zimmermann T (2013) Software analytics: so what? IEEE Softw 30(4):31–37

    Article  Google Scholar 

  61. MonetDB (Retrieved 2015) https://www.monetdb.org/home/features

  62. Nebert D, Whiteside A, Vretanos P (2007) OpenGIS Catalogue Services Specification (OGC 07-006r1)

    Google Scholar 

  63. NGA (2014) Digitalglobe application a boon to raster data storage, processing

    Google Scholar 

  64. NGA (Retrieved 2015) https://github.com/ngageoint/mrgeo/wiki

  65. Nikolaou C, Kyzirakos K, Bereta K, Dogani K, Giannakopoulou S, Smeros P, Garbis G, Koubarakis M, Molina D, Dumitru O, Schwarz G, Datcu M (2014) Big, linked and open data: applications in the German aerospace center. In: The semantic web: ESWC 2014 satellite events. Lecture notes in computer science. Springer International Publishing, New York, pp 444–449. doi:10.1007/978-3-319-11955-7_64, http://dx.doi.org/10.1007/978-3-319-11955-7_64

    Google Scholar 

  66. OGC (Retrieved 20 June 2015) OGC abstract specifications. http://www.opengeospatial.org/standards/as

  67. OGC (Retrieved 20 June 2015) OGC history. http://www.opengeospatial.org/ogc/historylong

  68. Oosthoek J, Flahaut J, Rossi A, Baumann P, Misev D, Campalani P, Unnithan V (2013) Planetserver: innovative approaches for the online analysis of hyperspectral satellite data from Mars. Adv Space Res pp 219–244. doi:http://dx.doi.org/10.1016/j.asr.2013.07.002

    Google Scholar 

  69. Palmer SC, Hunter PD, Lankester T, Hubbard S, Spyrakos E, Tyler AN, Présing M, Horváth H, Lamb A, Balzter H, Tóth VR (2015) Validation of envisat {MERIS} algorithms for chlorophyll retrieval in a large, turbid and optically-complex shallow lake. Remote Sens Environ 157(0):158–169. doi:http://dx.doi.org/10.1016/j.rse.2014.07.024, http://www.sciencedirect.com/science/article/pii/S0034425714002739, [special Issue: Remote Sensing of Inland Waters]

    Google Scholar 

  70. Pelekis N, Theodoridis Y (2014) Mobility data management and exploration. Springer, New York

    Book  Google Scholar 

  71. Pettorelli N, Vik J, Mysterud A, Gaillard J, Tucker C, Stenseth N (2005) Using the satellite-derived ndvi to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510

    Article  Google Scholar 

  72. Pijanowski BC, Tayyebi A, Doucette J, Pekin BK, Braun D, Plourde J (2014) A big data urban growth simulation at a national scale: configuring the GIS and neural network based land transformation model to run in a high performance computing (HPC) environment. Environ Model Software 51(0):250–268. doi:http://dx.doi.org/10.1016/j.envsoft.2013.09.015

    Google Scholar 

  73. Plaza AJ (2009) Special issue on architectures and techniques for real-time processing of remotely sensed images. J Real-Time Image Proc 4(3):191–193

    Article  MathSciNet  Google Scholar 

  74. Plaza AJ, Chang CI (2007) High performance computing in remote sensing. Chapman & Hall/CRC Press, New York

    Book  Google Scholar 

  75. Repository CC (Retrieved 2015) https://github.com/cartodb/cartodb.js

    Google Scholar 

  76. Rouse JW Jr, Haas RH, Schell JA, Deering DW (1974) Monitoring vegetation systems in the great Plains with Erts, vol.351. NASA Special Publication, Washington p 309

    Google Scholar 

  77. Russom P (2011) Big data analytics. TDWI best practices report, The Data Warehousing Institute (TDWI) Research

    Google Scholar 

  78. Sakr S, Liu A, Batista D, Alomari M (2011) A survey of large scale data management approaches in cloud environments. IEEE Commun Surv Tutorials 13(3):311–336. doi:10.1109/SURV.2011.032211.00087

    Article  Google Scholar 

  79. Sass G, Creed I, Bayley S, Devito K (2007) Understanding variation in trophic status of lakes on the boreal plain: a 20 year retrospective using landsat {TM} imagery. Remote Sens Environ 109(2):127–141

    Article  Google Scholar 

  80. Schut P (2007) OpenGIS web processing service (OGC 05-007r7)

    Google Scholar 

  81. Vouk M (2008) Cloud computing 2014; issues, research and implementations. In: 30th international conference on information technology interfaces, 2008 (ITI 2008), pp 31–40. doi:10.1109/ITI.2008.4588381

  82. Vretanos PPA (2010) OpenGIS Web Feature Service 2.0 Interface Standard (OGC 09-025r1 and ISO/DIS 19142)

    Google Scholar 

  83. Yu P (2013) On mining big data. In: Wang J, Xiong YH (ed) Web-age information management. Lecture notes in computer science. Springer, Berlin, Heidelberg

    Google Scholar 

  84. Yue P, Gong J, Di L, Yuan J, Sun L, Sun Z, Wang Q (2010) Geopw: laying blocks for the geospatial processing web. Trans GIS 14(6):755–772. doi:10.1111/j.1467-9671.2010.01232.x, http://dx.doi.org/10.1111/j.1467-9671.2010.01232.x

    Google Scholar 

  85. Yue P, Di L, Wei Y, Han W (2013) Intelligent services for discovery of complex geospatial features from remote sensing imagery. ISPRS J Photogramm Remote Sens 83(0):151–164. doi:http://dx.doi.org/10.1016/j.isprsjprs.2013.02.015, http://www.sciencedirect.com/science/article/pii/S0924271613000580

    Google Scholar 

  86. Zeiler M (1999) Modeling our world: the ESRI guide to geodatabase design. ESRI Press, Redlands

    Google Scholar 

  87. Zell E, Huff A, Carpenter A, Friedl L (2012) A user-driven approach to determining critical earth observation priorities for societal benefit. IEEE J Sel Top Appl Earth Obs Remote Sens 5(6):1594–1602. doi:10.1109/JSTARS.2012.2199467

    Article  Google Scholar 

  88. Zhang X, Seelan S, Seielstad G (2010) Digital northern great plains: a web-based system delivering near real time remote sensing data for precision agriculture. Remote Sens 2(3):861. doi:10.3390/rs2030861, http://www.mdpi.com/2072-4292/2/3/861

    Google Scholar 

  89. Zhang Y, Kersten M, Ivanova M, Nes N (2011) Sciql: bridging the gap between science and relational dbms. In: Proceedings of the 15th symposium on international database engineering & Applications (IDEAS ’11). ACM, New York, NY, pp 124–133. doi:10.1145/2076623.2076639, http://doi.acm.org/10.1145/2076623.2076639

  90. Zhang Y, Scheers B, Kersten MNN Mand Ivanova (2011) Astronomical data processing using sciql, an sql based query language for array data. In: Astronomical data analysis software and systems XXI, vol 461, p 729

    Google Scholar 

  91. Zhao P, Foerster T, Yue P (2012) The geoprocessing web. Comput Geosci 47(0): 3–12. doi:http://dx.doi.org/10.1016/j.cageo.2012.04.021, http://www.sciencedirect.com/science/article/pii/S0098300412001446, towards a Geoprocessing Web

    Google Scholar 

  92. Zikopoulos P, Eaton C (2012) Understanding big data: analytics for enterprise class hadoop and streaming data. McGraw-Hill Companies, Inc., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Karmas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Karmas, A., Tzotsos, A., Karantzalos, K. (2016). Geospatial Big Data for Environmental and Agricultural Applications. In: Yu, S., Guo, S. (eds) Big Data Concepts, Theories, and Applications . Springer, Cham. https://doi.org/10.1007/978-3-319-27763-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27763-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27761-5

  • Online ISBN: 978-3-319-27763-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics