Skip to main content

Role of Growth Factors in Modulation of the Microvasculature in Adult Skeletal Muscle

  • Chapter
  • First Online:
Growth Factors and Cytokines in Skeletal Muscle Development, Growth, Regeneration and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 900))

Abstract

Post-natal skeletal muscle is a highly plastic tissue that has the capacity to regenerate rapidly following injury, and to undergo significant modification in tissue mass (i.e. atrophy/hypertrophy) in response to global metabolic changes. These processes are reliant largely on soluble factors that directly modulate muscle regeneration and mass. However, skeletal muscle function also depends on an adequate blood supply. Thus muscle regeneration and changes in muscle mass, particularly hypertrophy, also demand rapid changes in the microvasculature. Recent evidence clearly demonstrates a critical role for soluble growth factors in the tight regulation of angiogenic expansion of the muscle microvasculature. Furthermore, exogenous modulation of these factors has the capacity to impact directly on angiogenesis and thus, indirectly, on muscle regeneration, growth and performance. This chapter reviews recent developments in understanding the role of growth factors in modulating the skeletal muscle microvasculature, and the potential therapeutic applications of exogenous angiogenic and anti-angiogenic mediators in promoting effective growth and regeneration, and ameliorating certain diseases, of skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Khalil R, Le Grand F, Pallafacchina G et al (2009) Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell 5:298–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameln H, Gustafsson T, Sundberg CJ, Okamoto K, Jansson E, Poellinger L, Makino Y (2005) Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J 19:1009–1011

    CAS  PubMed  Google Scholar 

  • Amir R, Ben-Sira D, Sagiv M (2007) IGF-I and FGF-2 responses to wingate anaerobic test in older men. J Sports Sci Med 6:227–232

    PubMed  PubMed Central  Google Scholar 

  • Andersen P, Henriksson J (1977) Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J Physiol 270:677–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arany Z, Foo SY, Ma Y et al (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451:1008–1012

    Article  CAS  PubMed  Google Scholar 

  • Arsic N, Zacchigna S, Zentilin L et al (2004) Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol Ther 10:844–854

    Article  CAS  PubMed  Google Scholar 

  • Asai J, Takenaka H, Kusano KF, et al (2006) Topical sonic hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 113: 2413–2424

    Google Scholar 

  • Audet GN, Fulks D, Stricker JC et al (2013) Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice. PLoS One 8, e55953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banfi A, von Degenfeld G, Gianni-Barrera R et al (2012) Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB. FASEB J 26:2486–2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckman SA, Chen WC, Tang Y (2013) Beneficial effect of mechanical stimulation on the regenerative potential of muscle-derived stem cells is lost by inhibiting vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 33:2004–2012

    Article  CAS  PubMed  Google Scholar 

  • Bertolino P, Deckers M, Lebrin F et al (2005) Transforming growth factor-beta signal transduction in angiogenesis and vascular disorders. Chest 128(6 Suppl):585S–590S

    Article  CAS  PubMed  Google Scholar 

  • Best TM, Gharaibeh B, Huard J (2013) Stem cells, angiogenesis and muscle healing: a potential role in massage therapies? Postgrad Med J 89:666–670

    Article  PubMed  Google Scholar 

  • Borselli C, Storrie H, Benesch-Lee F et al (2010) Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci U S A 107:3287–3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouis D, Kusumanto Y, Meijer C et al (2006) A review on pro- and anti-angiogenic factors as targets of clinical intervention. Pharmacol Res 53:89–103

    Article  CAS  PubMed  Google Scholar 

  • Brack AS, Conboy MJ, Roy S et al (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810

    Article  CAS  PubMed  Google Scholar 

  • Brindle NP, Saharinen P, Alitalo K (2006) Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 98:1014–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buford TW, MacNeil RG, Clough LG et al (2012) Active muscle regeneration following eccentric contraction-induced injury is similar between healthy young and older adults. J Appl Physiol. doi:10.1152/japplphysiol.01350.2012

    PubMed  Google Scholar 

  • Byrne A, Bouchier-Hayes DJ, Harmey JH (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9:777–794

    Article  CAS  PubMed  Google Scholar 

  • Carlson ME, Conboy MJ, Hsu M et al (2009a) Relative roles of TGF-β1 and Wnt in the systemic regulation and aging of satellite cell responses. Aging Cell 8:676–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson ME, Suetta C, Conboy MJ et al (2009b) Molecular aging and rejuvenation of human muscle stem cells. EMBO Mol Med 1:381–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  CAS  PubMed  Google Scholar 

  • Carosio S, Berardinelli MG, Aucello M et al (2011) Impact of ageing on muscle cell regeneration. Ageing Res Rev 10:35–42

    Article  CAS  PubMed  Google Scholar 

  • Carter JG, Cherry J, Williams K et al (2011) Splicing factor polymorphisms, the control of VEGF isoforms and association with angiogenic eye diseases. Curr Eye Res 36:328–335

    Article  CAS  PubMed  Google Scholar 

  • Chakkalakal JV, Jones KM, Basson MA, Brack AS (2012) The aged niche disrupts muscle stem cell quiescence. Nature 490:355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Xu Y, Song Y (2014) IGF-1 gene-modified muscle-derived stem cells are resistant to oxidative stress via enhanced activation of IGF-1R/PI3K/Akt signaling and secretion of VEGF. Mol Cell Biochem 386:167–175

    Article  CAS  PubMed  Google Scholar 

  • Chinsomboon J, Ruas J, Gupta RK et al (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci U S A 106:21401–21406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JM, Hurwitz HI (2013) Targeted inhibition of VEGF receptor 2: an update on ramucirumab. Expert Opin Biol Ther 13:1187–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowey CL (2013) Profile of tivozanib and its potential for the treatment of advanced renal cell carcinoma. Drug Des Dev Ther 7:519–527

    Article  CAS  Google Scholar 

  • Dallabrida SM, Ismail N, Oberle JR et al (2005) Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circ Res 96:e8–e24

    Article  CAS  PubMed  Google Scholar 

  • De Spiegelaere W, Casteleyn C, Van den Broeck W et al (2012) Intussusceptive angiogenesis: A biologically relevant form of angiogenesis. J Vasc Res 49:390–404

    Article  PubMed  Google Scholar 

  • Deasy BM, Feduska JM, Payne TR (2009) Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther 17:1788–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delavar H, Nogueira L, Wagner PD et al (2014) Skeletal myofiber VEGF is essential for the exercise training response in adult mice. Am J Physiol Regul Integr Comp Physiol. doi:10.1152/ajpregu.00522.2013

    PubMed  PubMed Central  Google Scholar 

  • Delloye-Bourgeois C, Gibert B, Rama N (2013) Sonic Hedgehog promotes tumor cell survival by inhibiting CDON pro-apoptotic activity. PLoS Biol 11(8), e1001623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duprez D, Fournier-Thibault C, Le Douarin N (1998) Sonic hedgehog induces proliferation of committed skeletal muscle cells in the chick limb. Development 125:495–505

    CAS  PubMed  Google Scholar 

  • Elia D, Madhala D, Ardon E et al (2007) Sonic hedgehog promotes proliferation and differentiation of adult muscle cells: Involvement of MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta 1773:1438–1446

    Article  CAS  PubMed  Google Scholar 

  • Ennen JP, Verma M, Asakura A (2013) Vascular-targeted therapies for Duchenne muscular dystrophy. Skel Muscle 3: doi: 10.1186/2044-5040-3-9

    Google Scholar 

  • Fagiani E, Christofori G (2013) Angiopoietins in angiogenesis. Cancer Lett 328:18–26

    Article  CAS  PubMed  Google Scholar 

  • Flann KL, Rathbone CR, Cole LC et al (2014) Hypoxia simultaneously alters satellite cell-mediated angiogenesis and hepatocyte growth factor expression. J Cell Physiol 229:572–579

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Klagsbrun M, Sasse J et al (1988) A heparin-binding angiogenic protein, basic fibroblast growth factor, is stored within basement membrane. Am J Pathol 130:393–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster H, Popplewell L, Dickson G (2012) Genetic therapeutic approaches for Duchenne muscular dystrophy. Hum Gene Ther 23:676–687

    Article  CAS  PubMed  Google Scholar 

  • Frey SP, Jansen H, Raschke MJ et al (2012) VEGF improves skeletal muscle regeneration after acute trauma and reconstruction of the limb in a rabbit model. Clin Orthop Relat Res 470:3607–3614

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujii T, Kuwano (2010) Regulation of the expression balance of angiopoietin-1 and angiopoietin-2 by Shh and FGF2. In Vitro Cell Dev Biol Anim 46: 487–491.

    Google Scholar 

  • Gavin TP, Westerkamp LM, Zwetsloot KA (2006) Soleus, plantaris and gastrocnemius VEGF mRNA responses to hypoxia and exercise are preserved in aged compared with young female C56BL/6 mice. Acta Physiol (Oxf) 188:113–121

    Article  CAS  Google Scholar 

  • Gavin TP, Ruster RS, Carrithers JA et al (2007) No difference in the skeletal muscle angiogenic response to aerobic exercise training between young and aged men. J Physiol 585:231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giacca M, Zacchiagna S (2012) VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond. Gene Ther 19:622–629

    Article  CAS  PubMed  Google Scholar 

  • Gianni-Barrera R, Trani M, Reginato S et al (2011) To sprout or split? VEGF, Notch and vascular morphogenesis. Biochem Soc Trans 39:1644–1648

    Article  CAS  PubMed  Google Scholar 

  • Gianni-Barrera R, Trani M, Reginato S et al (2013) VEGF over-expression in skeletal muscle induces angiogenesis by intussusception rather than sprouting. Angiogenesis 16:123–136

    Article  CAS  PubMed  Google Scholar 

  • Gorman JL, Liu STK, Slopack D et al (2014) Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells. PLoS One 9, e85537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grounds MD (1998) Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann N Y Acad Sci 854:78–91

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson MK, Kraus WE (2001) Exercise-induced angiogenesis-related growth and transcription factors in skeletal muscle and their modification in muscle pathology. Front Biosci 6:D75–D89

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson T, Puntschart A, Kaijser L et al (1999) Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol Heart Circ Physiol 45:H679–H685

    Google Scholar 

  • Gustafsson MK, Pan H, Pinney DF et al (2002) Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev 16:114–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsson T, Runqvist H, Norrbom J et al (2007) The influence of physical training on the angiopoietin and VEGF-A systems in human skeletal muscle. J Appl Physiol 103:1012–1020

    Article  CAS  PubMed  Google Scholar 

  • Heikura T, Nieminen T, Roschier MM et al (2012) Baculovirus-mediated vascular endothelial growth factor-D(ΔNΔC) gene transfer induces angiogenesis in rabbit skeletal muscle. J Gene Med 14:35–43

    Article  CAS  PubMed  Google Scholar 

  • Hoffner L, Nielsen JJ, Langberg H (2003) Exercise but not prostanoids enhance levels of vascular endothelial growth factor and other proliferative agents in the human skeletal muscle interstitium. J Physiol 550:217–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoier B, Hellsten Y (2014) Exercise induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. doi:10.1111/micc.12117

    PubMed  Google Scholar 

  • Hoier B, Rufener N, Bjosen-Moller J (2010) The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle. J Physiol 588:3833–3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoier B, Nordsborg N, Andersen S (2012) Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J Physiol 590:595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoier B, Prats C, Qvortrup K et al (2013) Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle. FASEB J 27:3496–3504

    Article  CAS  PubMed  Google Scholar 

  • Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression and growth in tumors mediated by angiopoietins and VEGF. Science 284:1994–1998

    Article  CAS  PubMed  Google Scholar 

  • Hudlicka O (1990) The response of muscle to enhanced and reduced activity. Baillieres Clin Endocrinol Metab 4:417–439

    Article  CAS  PubMed  Google Scholar 

  • Huttemann M, Lee I, Malek MH (2012) (−)-Epicatechin maintains endurance training adaptation in mice after 14 days of detraining. FASEB J 26:1413–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huttemann M, Lee I, Perkins GA (2013) (−)-Epicatechin is associated with increased angiogenic and mitochondrial signalling in the hindlimb of rats selectively bred for innate low running capacity. Clin Sci (Lond) 124:663–674

    Article  CAS  Google Scholar 

  • Iruela-Arispe ML, Bornstein P, Sage H (1991) Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc Natl Acad Sci U S A 88:5026–5030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson L, van Meeteren LA (2013) Transforming growth factor β family members in regulation of vascular function: In the light of vascular conditional knockouts. Exp Cell Res 319:1264–1270

    Article  CAS  PubMed  Google Scholar 

  • Jarvinen TA, Jarvinen M, Kalimo H (2014) Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons 3:337–345

    Google Scholar 

  • Johnson C, Sung HJ, Lessner SM et al (2004) Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: potential role in capillary branching. Circ Res 94:262–268

    Article  CAS  PubMed  Google Scholar 

  • Kasemkijwattana C, Menetrey J, Bosch P et al (2000) Use of growth factors to improve muscle healing after strain injury. Clin Orthop Relat Res 370:272–282

    Article  PubMed  Google Scholar 

  • Katoh M (2013) Therapeutics targeting angiogenesis: Genetics and epigenetics, extracellular miRNAs and signalling networks (review). Int J Mol Med 32:763–767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klingler W, Jurkatt-Rott K, Lehmann-Horn F et al (2012) The role of fibrosis in Duchenne muscular dystrophy. Acta Myol 31:184–195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koleva M, Kappler R, Vogler M (2005) Pleiotropic effects of sonic hedgehog on muscle satellite cells. Cell Mol Life Sci 62:1863–1870

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara G, Nishinakamura H, Kojima D (2013) Vascular endothelial growth factor-C derived from CD11b + cells induces therapeutic improvements in a murine model of hind limb ischemia. J Vasc Surg 57:1090–1099

    Article  PubMed  Google Scholar 

  • Lawler PR, Lawler J (2012) Molecular basis for the regulation of angiogenesis by thrombospondin-1 and −2. Cold Spring Harb Perspect Med 2:a006627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Y, Foster W, Deasy BM et al (2004) Transforming growth factor beta-1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol 164:1007–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieu C, Heymach J, Overman M et al (2011) Beyond VEGF: Inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res 17:6130–6139

    Article  CAS  PubMed  Google Scholar 

  • Lloyd PG, Prior BM, Yang HT et al (2003) Angiogenic growth factor expression in rat skeletal muscle in response to exercise training. Am J Physiol Heart Circ Physiol 284:H1668–H1678

    Article  CAS  PubMed  Google Scholar 

  • Long J, Wang S, Zhang Y, Liu X, Zhang H, Wang S (2013) The therapeutic effect of vascular endothelial growth factor gene- or heme oxygenase-1 gene-modified endothelial progenitor cells on neovascularization of rat hindlimb ischemia model. J Vasc Surg 58:756–765

    Article  PubMed  Google Scholar 

  • Ma J, Xue Y, Cui W et al (2012) Ras homolog gene family, member A promotes p53 degradation and vascular endothelial growth factor-dependent angiogenesis through an interaction with murine double minute 2 under hypoxic conditions. Cancer 118:105–116

    Article  CAS  Google Scholar 

  • Maclauchlan S, Skokos EA, Agah A et al (2009) Enhanced angiogenesis and reduced contraction in thrombospondin-2-null wounds is associated with increased levels of matrix metalloproteinases-2 and −9, and soluble VEGF. J Histochem Cytochem 57:301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madri JA, Pratt BM, Tucker AM (1988) Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix. J Cell Biol 106:1375–1384

    Article  CAS  PubMed  Google Scholar 

  • Makarevich P, Tsokolaeva Z, Shevelev A et al (2012) Combined transfer of human VEGF165 and HGF genes renders potent angiogenic effect in ischemic skeletal muscle. PLoS One 7, e38776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malek MH, Olfert IM (2009) Global deletion of thrombospondin-1 increases cardiac and skeletal muscle capillarity and exercise capacity in mice. Exp Physiol 94:749–760

    Article  CAS  PubMed  Google Scholar 

  • Malek MH, Huttemann M, Lee I et al (2013) Similar skeletal muscle angiogenic and mitochondrial signalling following 8 weeks of endurance exercise in mice: discontinuous versus continuous training. Exp Physiol 98:807–818

    Article  CAS  PubMed  Google Scholar 

  • Maves L, Waskiewicz AJ, Paul B et al (2007) Pbx homeodomain proteins direct MyoD activity to promote fast-muscle differentiation. Development 134:3371–3382

    Article  CAS  PubMed  Google Scholar 

  • Messina S, Mazzeo A, Bitto A et al (2007) VEGF overexpression via adeno-associated virus gene transfer promotes skeletal muscle regeneration and enhances muscle function in mdx mice. FASEB J 21:3737–3746

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CA, McGeachie JK, Grounds MD (1996) The exogenous administration of basic fibroblast growth factor to regenerating skeletal muscle in mice does not enhance the process of regeneration. Growth Factors 13:37–55

    Article  CAS  PubMed  Google Scholar 

  • Mofarrahi M, Hussain SN (2011) Expression and functional roles of angiopoietin-2 in skeletal muscles. PLoS One 6, e22882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu X, Urso ML, Murray K (2010) Relaxin regulates MMP expression and promotes satellite cell mobilization during muscle healing in both young and aged mice. Am J Pathol 177:2399–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mujagic E, Gianni-Barrera R, Trani M (2013) Induction of aberrant vascular growth, but not of normal angiogenesis, by cell-based expression of different doses of human and mouse VEGF is species-dependent. Hum Gene Ther Methods 24:28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negishi S, Li Y, Usas A et al (2005) The effect of relaxin treatment on skeletal muscle injuries. Am J Sports Med 33:1816–1823

    Article  PubMed  Google Scholar 

  • Nico B, Frigeri A, Nicchia GP et al (2003) Severe alterations of endothelial and glial cells in the blood–brain barrier of dystrophic mdx mice. Glia 42:235–251

    Article  PubMed  Google Scholar 

  • Nowak DG, Woolard J, Amin EM et al (2008) Expression of pro- and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci 121:3487–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olenich SA, Gutierrez-Reed N, Audet GN et al (2013) Temporal response of positive and negative regulators in response to acute and chronic exercise training in mice. J Physiol 591:5157–5169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olfert IM, Breen EC, Gavin TP et al (2006) Temporal thormbospondin-1 mRNA response to skeletal muscle exposed to acute and chronic exercise. Growth Factors 24:253–259

    Article  CAS  PubMed  Google Scholar 

  • Olofsson B, Pajusola K, Kaipainen A et al (1996) Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci U S A 93:2576–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orlova VV, Liu Z, Goumans MJ et al (2011) Controlling angiogenesis by two unique TGF-β type I receptor signaling pathways. Histol Histopathol 26:1219–1230

    CAS  PubMed  Google Scholar 

  • Palladino M, Gatto I, Neri V et al (2011) Pleiotropic beneficial effects of sonic hedgehog gene therapy in an experimental model of peripheral limb ischemia. Mol Ther 19:658–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palladino M, Gatto I, Neri V et al (2012) Combined therapy with sonic hedgehog gene transfer and bone marrow-derived endothelial progenitor cells enhances angiogenesis and myogenesis in the ischemic skeletal muscle. J Vasc Res 49:425–431

    Article  CAS  PubMed  Google Scholar 

  • Palladino M, Gatto I, Neri V et al (2013) Angiogenic impairment of the vascular endothelium: A novel mechanism and potential therapeutic target in muscular dystrophy. Arterioscler Thromb Vasc Biol 33:2867–2876

    Article  CAS  PubMed  Google Scholar 

  • Pepper MS, Belin D, Montesano R et al (1990) Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol 111:743–755

    Article  CAS  PubMed  Google Scholar 

  • Pepper MS, Vassalli JD, Orci L et al (1993) Biphasic effect of transforming growth factor-β1 on in vitro angiogenesis. Exp Cell Res 204:356–363

    Article  CAS  PubMed  Google Scholar 

  • Piccioni A, Gaetani E, Palladino M et al (2014a) Sonic hedgehog gene therapy increases the ability of dystrophic skeletal muscle to regenerate after injury. Gene Ther. doi:10.1038/gt.2014.13

    PubMed Central  Google Scholar 

  • Piccioni A, Gaetani E, Neri V et al (2014b) Sonic hedgehog therapy in a mouse model of age-associated impairment of skeletal muscle regeneration. J Gerontol A Biol Sci Med Sci 69:245–252

    Article  CAS  PubMed  Google Scholar 

  • Pola R, Ling LE, Silver M et al (2001) The morphogen Sonic hedgehog is an indirect angiogenic agent upregulating two families of angiogenic growth factors. Nat Med 7:706–711

    Article  CAS  PubMed  Google Scholar 

  • Pola R, Ling LE, Aprahamian TR et al (2003) Postnatal recapitulation of embryonic hedgehog pathway in response to skeletal muscle ischemia. Circulation 108:479–485

    Article  PubMed  Google Scholar 

  • Qin D, Trenkwalder T, Lees S et al (2013) Early vessel destabilization mediated by angiopoeitin-2 and subsequent vessel maturation via angiopoeitin-1 induce functional neovasculature after ischemia. PLoS One 8, e61831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajurkar M, Huang H, Cotton JL et al (2013) Distinct cellular origin and genetic requirement of Hedgehog-Gli in postnatal rhabdomyosarcoma genesis. Oncogene. doi:10.1038/onc.2013.480

    PubMed  PubMed Central  Google Scholar 

  • Renault MA, Roncalli J, Tongers J et al (2010) Sonic hedgehog induces angiogenesis via Rho kinase-dependent signaling in endothelial cells. J Mol Cell Cardiol 49:490–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renault MA, Chapouly C, Yao Q et al (2013a) Desert hedgehog promotes ischemia-induced angiogenesis by ensuring peripheral nerve survival. Circ Res 112:762–770

    Article  CAS  PubMed  Google Scholar 

  • Renault MA, Robbesyn F, Chapouly C et al (2013b) Hedgehog-dependent regulation of angiogenesis and myogenesis is impaired in aged mice. Arterioscler Thromb Vasc Biol 33:2858–2866

    Article  CAS  PubMed  Google Scholar 

  • Rhoads RP, Flann KL, Cardinal TR et al (2013) Satellite cells isolated from aged or dystrophic muscle exhibit a reduced capacity to promote angiogenesis in vitro. Biochem Biophys Res Commun 440:399–404

    Article  CAS  PubMed  Google Scholar 

  • Rissanen TT, Vajanto I, Hiltunen MO et al (2002) Expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 (KDR/Flk-1) in ischemic skeletal muscle and its regeneration. Am J Pathol 160:1393–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rissanen TT, Markkanen JE, Gruchala M et al (2003) VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 92:1098–1106

    Article  CAS  PubMed  Google Scholar 

  • Rivilis I, Milkiewicz M, Boyd P et al (2002) Differential involvement of MMP-2 and VEGF in muscle stretch- versus shear-stress induced angiogenesis. Am J Physiol Heart Circ Physiol 283:H1430–H1438

    Article  CAS  PubMed  Google Scholar 

  • Roberts AB, Sporn MB, Assoian RK et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A 83:4167–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodino-Klapac LR, Mendell JR, Sahenk Z (2013) Update on the treatment of Duchenne muscular dystrophy. Curr Neurol Neurosci Rep 13. doi:10.1007/s11910-012-0332-1

  • Roudier E, Forn P, Perry ME et al (2012) Murine double minute-2 expression is required for capillary maintenance and exercise-induced angiogenesis in skeletal muscle. FASEB J 26:4530–4539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roudier E, Milkiewicz M, Birot O et al (2013) Endothelial FoxO1 is an intrinsic regulator of thrombospondin 1 expression that restrains angiogenesis in ischemic muscle. Angiogenesis 16:759–772

    Article  CAS  PubMed  Google Scholar 

  • Sacks LD, Cann GM, Nikovits W Jr et al (2003) Regulation of myosin expression during myotome formation. Development 130:3391–3402

    Article  CAS  PubMed  Google Scholar 

  • Shibuya M (2008) Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. BMB Rep 41:278–286

    Google Scholar 

  • Shimada T, Takeshita Y, Murohara T et al (2004) Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation 110:1148–1155

    Article  PubMed  Google Scholar 

  • Shimizu-Motohashi Y, Askaura A (2014) Angiogenesis as a novel therapeutic strategy for Duchenne muscular dystrophy through decreased ischemia and increased satellite cells. Front Physiol 5. doi: 10.3389/fphys.2014.00050.

  • Smythe GM, Lai MC, Grounds MD et al (2002) Adeno-associated virus-mediated vascular endothelial growth factor gene therapy in skeletal muscle before transplantation promotes revascularization of regenerating muscle. Tissue Eng 8:879–891

    Article  CAS  PubMed  Google Scholar 

  • Smythe GM, Shavlakadze T, Roberts P et al (2008) Age influences the early events of skeletal muscle regeneration: studies of whole muscle grafts transplanted between young (8 weeks) and old (13–21 months) mice. Exp Gerontol 43:550–562

    Article  CAS  PubMed  Google Scholar 

  • Straface G, Aprahamian T, Flex A et al (2009) Sonic hedgehog regulates angiogenesis and myogenesis during post-natal skeletal muscle regeneration. J Cell Mol Med 13:2424–2435

    Article  PubMed  PubMed Central  Google Scholar 

  • Stratos I, Madry H, Rotter R et al (2011) Fibroblast growth factor-2-overexpressing myoblasts encapsulated in alginate spheres increase proliferation, reduce apoptosis, induce adipogenesis, and enhance regeneration following skeletal muscle injury in rats. Tissue Eng Part A 17:2867–2877

    Article  CAS  PubMed  Google Scholar 

  • Tepekoylu C, Wang FS, Kozaryn R et al (2013) Shock wave treatment induces angiogenesis and mobilizes endogenous CD31/CD34-positive endothelial cells in a hindlimb ischemia model: implications for angiogenesis and vasculogenesis. J Thorac Cardiovasc Surg 146:971–978

    Article  PubMed  Google Scholar 

  • Terada S, Ota S, Kobayashi M et al (2013) Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J Bone Joint Surg Am 95:980–988

    Article  PubMed  Google Scholar 

  • Tesch PA, Thorsson A, Kaiser P (1984) Muscle capillary supply and fiber type characteristics in weight and power lifters. J Appl Physiol 56:35–38

    CAS  PubMed  Google Scholar 

  • Uezumi A, Ikemoto-Uezumi M, Tsuchida K (2014) Roles of nonmyogenic mesenchymal progenitors in pathogenesis and regeneration of skeletal muscle. Front Physiol. doi: 10.3389/fphys.2014.00068

  • Unemori EN, Lewis M, Constant J et al (2000) Relaxin induces vascular endothelial growth factor expression and angiogenesis selectively at wound sites. Wound Repair Regen 8:361–370

    Article  CAS  PubMed  Google Scholar 

  • Villavivicencio EH, Walterhouse DO, Iannaccone PM (2000) The sonic hedgehog-patched-gli pathway in human development and disease. Am J Hum Genet 67:1047–1054

    Article  Google Scholar 

  • Visconti RP, Richardson CD, Sato TN (2002) Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci U S A 99:8219–8224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlodavsky I, Folkman J, Sullivan R et al (1987) Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci U S A 84:2292–2296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volpi N, Pecorelli A, Lorenzoni P et al (2013) Antiangiogenic VEGF isoform in inflammatory myopathies. Mediators Inflamm. doi:10.1155/2013/219313

    PubMed  PubMed Central  Google Scholar 

  • Wagatsuma A (2006) Effect of aging on expression of angiogenesis-related factors in mouse skeletal muscle. Exp Gerontol 41:49–54

    Article  CAS  PubMed  Google Scholar 

  • Wagatsuma A (2007) Endogenous expression of angiogenesis-related factors in response to muscle injury. Mol Cell Biochem 298:151–159

    Article  CAS  PubMed  Google Scholar 

  • Wagatsuma A (2008) Effect of hindlimb unweighting on expression of hypoxia-inducible factor-1 alpha, vascular endothelial growth factor, angiopoietin, and their receptors in mouse skeletal muscle. Physiol Res 57:613–620

    CAS  PubMed  Google Scholar 

  • Wagatsuma A, Tamaki H, Ogita F (2005) Capillary supply and gene expression of angiogenesis-related factors in murine skeletal muscle following denervation. Exp Physiol 90:403–409

    Article  CAS  PubMed  Google Scholar 

  • Wagner PD (2011) The critical role of VEGF in skeletal muscle angiogenesis and blood flow. Biochem Soc Trans 39:1556–1559

    Article  CAS  PubMed  Google Scholar 

  • Wallace MA, Hock MB, Hazen BC et al (2011) Striated muscle activator of Rho signalling (STARS) is a PGC-1α/oestrogen-related receptor-α target gene and is upregulated in human skeletal muscle after endurance exercise. J Physiol 589:2027–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JS, Liu X, Xue ZY et al (2011) Effects of aging on time course of neovascularisation-related gene expression following acute hindlimb ischemia in mice. Chin Med J 124:1075–1081

    CAS  PubMed  Google Scholar 

  • Wang H, Lisrat A, Meunier B et al (2013) Apoptosis in capillary endothelial cells in ageing skeletal muscle. Aging Cell. doi:10.1111/acel.12169

    Google Scholar 

  • Xiong J, Yang Q, Li J et al (2014) Effects of MDM2 inhibitors on vascular endothelial growth factor-mediated tumor angiogenesis in human breast cancer. Angiogenesis 17:37–50

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Haider HK, Esa WB et al (2010) Liposome-based vascular endothelial growth factor-165 transfection with skeletal myoblast for treatment of ischaemic limb disease. J Cell Mol Med 14:323–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Shi X, Liang J et al (2011) Expression of pro- and anti-angiogenic isoforms of VEGF in the mouse model of oxygen-induced retinopathy. Exp Eye Res 93:921–926

    Article  CAS  PubMed  Google Scholar 

  • Zhao T, Zhao W, Meng W et al (2014) Vascular endothelial growth factor-C: Its unrevealed role in fibrogenesis. Am J Physiol Heart Circ Physiol. doi:10.1152/ajpheart.00559.2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gayle Smythe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Smythe, G. (2016). Role of Growth Factors in Modulation of the Microvasculature in Adult Skeletal Muscle. In: White, J., Smythe, G. (eds) Growth Factors and Cytokines in Skeletal Muscle Development, Growth, Regeneration and Disease. Advances in Experimental Medicine and Biology, vol 900. Springer, Cham. https://doi.org/10.1007/978-3-319-27511-6_7

Download citation

Publish with us

Policies and ethics