Skip to main content

Natural Convection Supercritical Fluid Systems for Geothermal, Heat Transfer, and Energy Conversion

  • Chapter
  • First Online:
Energy Solutions to Combat Global Warming

Part of the book series: Lecture Notes in Energy ((LNEN,volume 33))

Abstract

Natural convective flow of supercritical fluids has become a hot topic in engineering applications. Natural circulation thermosyphon (or NCL: natural circulation loop) using supercritical/transcritical CO2 can be a potential choice for effectively transportation of heat and mass without pumping devices. This chapter presents a series of numerical/experimental investigations into the fundamental features in a supercritical/transcritical CO2 based natural circulation loop systems as well as possible applications and innovations in engineering fields. New heat transport model aiming at transcritical thermosyphon heat transfer and stability is proposed with supercritical/transcritical turbulence model incorporated. The effects from various system parameters, operation conditions, accident analysis, apparatus developments as well as control strategies are also included with detailed explanations in this chapter. It is clearly found that such novel fluids and systems would be one promising candidate for future development of energy solutions to global warming issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Area

\( c_{p} \) :

Specific heat capacity

C :

Constant

\( C_{\mu } C_{1\varepsilon } C_{2\varepsilon } C_{3\varepsilon } \) :

Parameters in RNG model equations

D :

Diameter of pipe

E :

Energy

g :

Gravitational acceleration

G k :

Turbulent kinetic energy due to velocity gradients

G b :

Turbulent kinetic energy due to buoyancy

Gr m :

Modified Grash of number

h :

Heat transfer coefficient

H :

Length of vertical pipes

k :

Turbulent kinetic energy

L :

Heating (cooling) length of a pipe

L 0 :

Total length of a horizontal pipe

L 1 :

Adiabatic pipe length on horizontal pipe

NCL :

Natural circulation loop

Nu :

Nusselt number

N G :

Nondimensional loop geometric parameter

P :

External surface force

p :

Pressure of the fluid

Pr :

Prandtl number

Pr t :

Turbulent Prandtl number

Q :

Unsteady heat flux

Q W :

Boundary heat flux

R :

Parameter in RNG turbulence model equations

S :

Strain tensor

t :

Time

T :

Temperature

\( \overline{V} \) :

Dimensional velocity

v :

Nondimensional velocity

x :

X-coordinate location

X :

Dimensionless axial coordinate (X = x/L 0 )

y :

Y-coordinate location

\( \alpha \) :

Thermal diffusivity thermal conductivity parameter

\( \alpha_{k} \,\alpha_{s} \) :

Parameters in RNG model

\( \beta \) :

Volumetric expansion coefficient; parameter in RNG model equations

\( \lambda \) :

Thermal conductivity

\( \varepsilon \) :

Turbulence dissipation rate

\( \mu \) :

Dynamic viscosity

\( \mu_{t} \,\mu_{eff} \) :

Viscosity parameter in RNG model

\( \eta \) :

Parameter in RNG turbulence model

\( \varPhi \) :

Dissipation function, \( \left( { \equiv \left( {\overline{\tau } \cdot \nabla } \right) \cdot \overline{V} } \right) \)

\( \overline{\tau } \) :

Shear tensor, \( \left( { \equiv \left( {\begin{array}{*{20}c} {\tau_{xx} } & {\tau_{xy} } \\ {\tau_{yx} } & {\tau_{yy} } \\ \end{array} } \right)} \right) \)

\( \nu \) :

Kinematic viscosity

b:

Bulk

i:

X-direction

j:

Y-direction

r:

Radial direction, power

ref:

Reference value, bulk value

wall:

Wall value

x:

Local, value of specific axial location

References

  1. Atrens AD, Gurgenci H, Rudolph V (2009) CO2 thermosiphon for competitive geothermal power generation. Energy Fuels 23:553–557

    Article  Google Scholar 

  2. Basu DN, Bhattacharyys S, Das PK (2008) Effect of geometric parameters on steady-state performance of single-phase NCL with heat loss to ambient. Int J Therm Sci 47:1359–1373

    Article  Google Scholar 

  3. Cammarata L, Fichera A, Pagano A (2003) Stability maps for rectangular circulation loops. Appl Therm Eng 23:965–977

    Article  Google Scholar 

  4. Carles P (2010) A brief review of the thermaophysical properties of supercritical fluids. J Supercrit Fluids 53:2–11

    Article  Google Scholar 

  5. Chatoorgoon V, Voodi A, Fraser D (2005) The stability boundary for supercritical flow in natural convection loops Part I: H2O studies. Nucl Eng Des 235:2570–2580

    Article  Google Scholar 

  6. Chatoorgoon V, Voodi A, Upadhye P (2005) The stability boundary for supercritical flow in natural-convection loops Part II: CO2 and H2. Nucl Eng Des 235:2581–2593

    Article  Google Scholar 

  7. Chen L, Zhang XR, Yamaguchi H, Liu ZSS (2010) Effect of heat transfer on the instabilities and transitions of supercritical CO2 flow in a natural circulation loop. Int J Heat Mass Transf 53:4101–4111

    Google Scholar 

  8. Chen L, Zhang XR (2011) Simulation of heat transfer and system behavior in a supercritical CO2 based thermosyphon: effect of pipe diameter. ASME J Heat Transf 133:2505–2513

    Google Scholar 

  9. Chen L, Zhang XR, Cao S, Bai H (2012) Study of trans-critical CO2 natural convective flow with unsteady heat input and its implications on system control. Int J Heat Mass Transf 55:7119–7132

    Article  Google Scholar 

  10. Chen L, Deng BL, Jiang B, Zhang XR (2013) Thermal and hydrodynamic characteristics of supercritical CO2 natural circulation in closed loops. Nucl Eng Des 257:21–30

    Article  Google Scholar 

  11. Chen L, Deng BL, Zhang XR (2013) Experimental investigation of CO2 thermosyphon flow and heat transfer in the supercritical region. Int J Heat Mass Transf 64:202–211

    Article  Google Scholar 

  12. Chen L, Deng BL, Zhang XR (2013) Experimental study of trans-critical and supercritical CO2 natural circulation flow in a closed loop. Appl Therm Eng 59:1–13

    Article  Google Scholar 

  13. Chen L, Zhang XR, Jiang B (2014) Effects of heater orientations on the natural circulation and heat transfer in a supercritical CO2 rectangular loop. ASME J Heat Transf 136(5):052501, 11 p

    Google Scholar 

  14. Dimmick GR, Chatoorgon V, Khartabil HF, Duffey RB (2002) Natural-convection studies for advanced CANDU reactor concepts. Nucl Eng Des 215:27–38

    Article  Google Scholar 

  15. Driscoll MJ, Hejzlar P (2004) 300 MWe Supercritical CO2 plant layout and design, Report No: MIT-GFR-014, MIT Nuclear Engineering Department

    Google Scholar 

  16. Duffey RB, Pioro IL (2005) Experimental heat transfer for supercritical carbon dioxide flowing inside channels (survey). Nucl Eng Des 235:913–924

    Article  Google Scholar 

  17. Fukuda K, Kobori T (1979) Classification of two-phase flow stability by density-wave oscillation model. J Nucl Sci Tech 16:95–108

    Article  Google Scholar 

  18. He S, Kim WS, Jackson JD (2008) A computational study of convective heat transfer to carbon dioxide at a pressure just above the critical value. Appl Therm Eng 28:1662–1675

    Article  Google Scholar 

  19. International Atomic Energy Agency (2009) Passive safety systems and natural circulation in water cooled nuclear power plants, IAEA-TECDOC-1624, pp 53–67

    Google Scholar 

  20. Jain PK, Rizwan-uddin (2008) Numerical analysis of supercritical flow instabilities in a natural circulation loop. Nucl Eng Des 238:1947–1957

    Google Scholar 

  21. Kumar KK, Gopal MR (2008) Steady-state analysis of CO2 based natural circulation loops with end heat exchangers. Appl Therm Eng 29:1893–1903

    Article  Google Scholar 

  22. Kumar KK, Gopal MR (2009) Effect of system pressure on the steady state performance of a CO2 based natural circulation loop. Appl Therm Eng 29:3346–3352

    Article  Google Scholar 

  23. Kumar KK, Gopal MR (2011) Experimental studies on CO2 based single and two-phase natural circulation loops. Appl Therm Eng 31:3437–3443

    Article  Google Scholar 

  24. Linzer W, Walter H (2003) Flow reversal in natural circulation systems. Appl Therm Eng 23:2363–2372

    Article  Google Scholar 

  25. Lisboa PF, Fernandes J, Simoes PC, Mota JPB, Saatdjian E (2010) Computational fluid dynamics study of a Kenics static mixer as a heat exchanger for supercritical carbon dioxide. J Supercrit Fluids 55:107–115

    Article  Google Scholar 

  26. Misale M, Frogheri M (2001) Stablization of a single-phase natural circulation loop by pressure drops. Exp Thermal Fluid Sci 25:277–282

    Article  Google Scholar 

  27. Misale M, Garibaldi P, Passos JC, Bitencourt GG (2007) Experiments in a single-phase natural circulation mini-loop. Exp Thermal Fluid Sci 31:1111–1120

    Article  Google Scholar 

  28. Moisseytsev A, Sienicki JJ (2008) Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor. Nucl Eng Des 238:2094–2105

    Article  Google Scholar 

  29. Mousavian SK, Misale M, D’Aural F, Salehi M (2004) Transient and stability analysis in single-phase natural circulation. Ann Nucl Energy 31:1177–1198

    Article  Google Scholar 

  30. Neksa P (2002) CO2 heat pump systems. Int J Refrig 25:421–427

    Article  Google Scholar 

  31. Neksfit P, Rekstad H, Zakeri GR, Schiefloe PA (1998) CO2-heat pump water heater: characteristics, system design and experimental results. Int J Refrig 21:172–179

    Article  Google Scholar 

  32. NIST (2006) Standard Reference Database-REFPROP, Version 8.0

    Google Scholar 

  33. Shan XY, Schmidt DP, Watkins JJ (2007) Study of natural convection in supercritical CO2 cold wall reactors: simulations and experiments. J Supercrit Fluids 40:84–92

    Article  Google Scholar 

  34. Swapnalee BT, Vijayan PK (2011) A generalized flow equation for single-phase natural circulation loops obeying multiple friction laws. Int J Heat Mass Transf 54:2618–2619

    Article  MATH  Google Scholar 

  35. Swapnalee BT, Vijayan PK, Sharma M, Pilkhwal DS (2012) Steady state flow and static instability of supercritical natural circulation loops. Nucl Eng Des 245:99–112

    Article  Google Scholar 

  36. Vijayan PK, Austregesilo H, Teschendorff V (1995) Simulation of the unstable oscillatory behavior of single-phase natural circulation with repetitive flow reversals in a rectangular loop using the computer code ATHLET. Nucl Eng Des 155:623–641

    Article  Google Scholar 

  37. Vijayan PK, Bade MH, Saha D, Sinha RK, Venkat RV (2004) A generalized flow correlation for single-phase natural circulation loops. In: Proceedings of the 17th National and 6th ISHMT/ASME heat and mass transfer conference, Kalpakkam, India, January, HMT-2004-C022

    Google Scholar 

  38. Welander P (1967) On the oscillatory instability of a differentially heated fluid loop. J Fluid Mech 29:17–30

    Article  MATH  Google Scholar 

  39. Yadav AK, Gopal MR, Bhattacharyya S (2012) CO2 based natural circulation loops: New correlations for friction and heat transfer. Int J Heat Mass Transf 55:4621–4630

    Article  Google Scholar 

  40. Yang J, Oka Y, Ishiwatari Y, Liu J, Yoo J (2007) Numerical investigation of heat transfer in upward flow of supercritical water in circular tubes and tight fuel rod bundles. Nucl Eng Des 237:420–430

    Article  Google Scholar 

  41. Yamaguchi H, Sawada N, Suzuki H, Ueda H, Zhang XR (2010) Preliminary study on a solar water heater using supercritical carbon dioxide as working fluid. ASME J Solar Energy Eng 132:101–106

    Article  Google Scholar 

  42. Yoshikawa S, Smith RL, Inomata H, Matsumura Y, Arai K (2005) Performance of a natural convection circulation system for supercritical fluids. J Supercrit Fluids 36:70–80

    Article  Google Scholar 

  43. Zappoli B (2003) Near-critical fluid hydrodynamics. C. R. Mecanique 331:713–726

    Article  MATH  Google Scholar 

  44. Zhang XR, Chen L, Yamaguchi H (2010) Natural convective flow and heat transfer of supercritical CO2 in a rectangular circulation loop. Int J Heat Mass Transf 53:4112–4122

    Article  MATH  Google Scholar 

  45. Zhang XR, Yamaguchi H, Fujima K, Enomoto M, Sawada N (2007) Theoretical analysis of a thermodynamic cycle for power production using supercritical carbon dioxide. Energy 32:591–599

    Article  Google Scholar 

  46. Zhang XR, Yamaguchi H (2008) An experimental study on evacuated tube solar collector using supercritical CO2. Appl Therm Eng 28:1225–1233

    Article  Google Scholar 

  47. Zhang XR, Yamaguchi H, Fujima K, Enomoto M, Sawada N (2005) A feasibility study of CO2—based Rankine cycle powered by solar energy. JSME Int J Ser B Fluids Therm Eng 48:540–547

    Article  Google Scholar 

  48. Zhang XR, Yamaguchi H, Uneno D, Fujima K, Enomoto M, Sawada N (2006) Analysis of a novel solar energy powered Rankine cycle for combined power and heat generation using supercritical carbon dioxide. Renew Energy 31:1839–1854

    Article  Google Scholar 

  49. Zhang XR, Yamaguchi H, Uneno D (2007) Experimental study on the performance of solar Rankine system using supercritical CO2. Renew Energy 32:2617–2628

    Article  Google Scholar 

Download references

Acknowledgments

This chapter is a general summary and outlook of the series studies into supercritical natural circulation systems. The support of National Science Foundation of China (No. 51476001) is gratefully acknowledged. The support from Beijing Engineering Research Center of City Heat is also gratefully acknowledged. The authors are thankful for the assists in numerical/experimental analysis from Dr. Bili Deng, Mr. Bin Jiang, Ms. Jia Liu, Mr. Yimin Chen in Renewable Thermal Lab in College of Engineering, Peking University. The authors are also grateful for the discussion/suggestions from Dr. Yuhui Cao in College of Engineering Sciences, University of Chinese Academic of Sciences, from Prof. Hiroshi Yamaguchi and Dr. Yuhiro Iwamoto in Energy Conversion Research Center of Doshisha University (Japan), and from Prof. Shigenao Maruyama, Prof. Atsuki Komiya, and Dr. Junnosuke Okajima in Institute of Fluid Science, Tohoku University (Japan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Chen or Xin-Rong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, L., Zhang, XR. (2017). Natural Convection Supercritical Fluid Systems for Geothermal, Heat Transfer, and Energy Conversion. In: Zhang, X., Dincer, I. (eds) Energy Solutions to Combat Global Warming. Lecture Notes in Energy, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-26950-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26950-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26948-1

  • Online ISBN: 978-3-319-26950-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics